6.
Reeves A, Brikun I, Cernota W, Leach B, Gonzalez M, Weber J
. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng. 2007; 9(3):293-303.
PMC: 2722834.
DOI: 10.1016/j.ymben.2007.02.001.
View
7.
Xu F, Ke X, Hong M, Huang M, Chen C, Tian X
. Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea. Biochem Biophys Res Commun. 2021; 542:73-79.
DOI: 10.1016/j.bbrc.2021.01.024.
View
8.
Yu F, Haynes S, Teo G, Avtonomov D, Polasky D, Nesvizhskii A
. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant. Mol Cell Proteomics. 2020; 19(9):1575-1585.
PMC: 7996969.
DOI: 10.1074/mcp.TIR120.002048.
View
9.
Ke X, Jiang X, Huang M, Tian X, Chu J
. Engineering of succinyl-CoA metabolism in view of succinylation regulation to improve the erythromycin production. Appl Microbiol Biotechnol. 2022; 106(13-16):5153-5165.
DOI: 10.1007/s00253-022-12060-4.
View
10.
Zhao Y, Han Y, Sun Y, Wei Z, Chen J, Niu X
. Comprehensive Succinylome Profiling Reveals the Pivotal Role of Lysine Succinylation in Energy Metabolism and Quorum Sensing of . Front Microbiol. 2021; 11:632367.
PMC: 7882547.
DOI: 10.3389/fmicb.2020.632367.
View
11.
Xie L, Liu W, Li Q, Chen S, Xu M, Huang Q
. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J Proteome Res. 2014; 14(1):107-19.
DOI: 10.1021/pr500859a.
View
12.
Colak G, Xie Z, Zhu A, Dai L, Lu Z, Zhang Y
. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol Cell Proteomics. 2013; 12(12):3509-20.
PMC: 3861704.
DOI: 10.1074/mcp.M113.031567.
View
13.
Zhang H, Li P, Ren S, Cheng Z, Zhao G, Zhao W
. CobB2-mediated Lysine Desuccinylation Regulates Protein Biosynthesis and Carbon Metabolism in . Mol Cell Proteomics. 2019; 18(10):2003-2017.
PMC: 6773565.
DOI: 10.1074/mcp.RA118.001298.
View
14.
Zhang M, Liu T, Wang L, Huang Y, Fan R, Ma K
. Global landscape of lysine acylomes in Bacillus subtilis. J Proteomics. 2022; 271:104767.
DOI: 10.1016/j.jprot.2022.104767.
View
15.
Kumaran S, Patel M, Jordan F
. Nuclear magnetic resonance approaches in the study of 2-oxo acid dehydrogenase multienzyme complexes--a literature review. Molecules. 2013; 18(10):11873-903.
PMC: 6270654.
DOI: 10.3390/molecules181011873.
View
16.
Kavi Kishor P, Suravajhala R, Rajasheker G, Marka N, Shridhar K, Dhulala D
. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. Front Plant Sci. 2020; 11:546213.
PMC: 7744598.
DOI: 10.3389/fpls.2020.546213.
View
17.
Yang M, Wang Y, Chen Y, Cheng Z, Gu J, Deng J
. Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis. Mol Cell Proteomics. 2015; 14(4):796-811.
PMC: 4390261.
DOI: 10.1074/mcp.M114.045922.
View
18.
Hasan M, Kurata H
. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features. PLoS One. 2018; 13(10):e0200283.
PMC: 6193575.
DOI: 10.1371/journal.pone.0200283.
View
19.
Hoie M, Kiehl E, Petersen B, Nielsen M, Winther O, Nielsen H
. NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning. Nucleic Acids Res. 2022; 50(W1):W510-W515.
PMC: 9252760.
DOI: 10.1093/nar/gkac439.
View