6.
Chen J, Ding H, Wang J, Shao L
. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials. 2003; 25(4):723-7.
DOI: 10.1016/s0142-9612(03)00566-0.
View
7.
Chen A, Zhang M, Wei D, Stueber D, Taratula O, Minko T
. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 2009; 5(23):2673-7.
PMC: 2833276.
DOI: 10.1002/smll.200900621.
View
8.
Clegg A, Scott D, Hewitson P, Sidhu M, Waugh N
. Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax. 2002; 57(1):20-8.
PMC: 1746188.
DOI: 10.1136/thorax.57.1.20.
View
9.
de la Harpe K, Kondiah P, Choonara Y, Marimuthu T, du Toit L, Pillay V
. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells. 2019; 8(10).
PMC: 6829615.
DOI: 10.3390/cells8101209.
View
10.
de Silva L, Fu J, Htar T, Wan Kamal W, Kasbollah A, Muniyandy S
. Biodistribution Study of Niosomes in Tumor-Implanted BALB/C Mice Using Scintigraphic Imaging. Front Pharmacol. 2022; 12:778396.
PMC: 8777053.
DOI: 10.3389/fphar.2021.778396.
View
11.
de Wilt L, Jansen G, Assaraf Y, Van Meerloo J, Cloos J, Schimmer A
. Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochem Pharmacol. 2011; 83(2):207-17.
DOI: 10.1016/j.bcp.2011.10.009.
View
12.
Dilnawaz F
. Multifunctional Mesoporous Silica Nanoparticles for Cancer Therapy and Imaging. Curr Med Chem. 2018; 26(31):5745-5763.
DOI: 10.2174/0929867325666180501101044.
View
13.
Dilnawaz F, Sahoo S
. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm. 2013; 85(3 Pt A):452-62.
DOI: 10.1016/j.ejpb.2013.07.013.
View
14.
Djayanti K, Maharjan P, Cho K, Jeong S, Kim M, Shin M
. Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations. Int J Mol Sci. 2023; 24(7).
PMC: 10094416.
DOI: 10.3390/ijms24076349.
View
15.
Fan Q, Wang Q, Cai R, Yuan H, Xu M
. The ubiquitin system: orchestrating cellular signals in non-small-cell lung cancer. Cell Mol Biol Lett. 2020; 25:1.
PMC: 6966813.
DOI: 10.1186/s11658-019-0193-6.
View
16.
Fukuda S, Pelus L
. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther. 2006; 5(5):1087-98.
DOI: 10.1158/1535-7163.MCT-05-0375.
View
17.
Gisbert-Garzaran M, Vallet-Regi M
. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. Nanomaterials (Basel). 2020; 10(5).
PMC: 7279540.
DOI: 10.3390/nano10050916.
View
18.
Groen K, van de Donk N, Stege C, Zweegman S, Nijhof I
. Carfilzomib for relapsed and refractory multiple myeloma. Cancer Manag Res. 2019; 11:2663-2675.
PMC: 6450182.
DOI: 10.2147/CMAR.S150653.
View
19.
Guan J, Sun J, Sun F, Lou B, Zhang D, Mashayekhi V
. Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes. Nanoscale. 2017; 9(26):9190-9201.
DOI: 10.1039/c7nr02663c.
View
20.
Hajek R, Masszi T, Petrucci M, Palumbo A, Rosinol L, Nagler A
. A randomized phase III study of carfilzomib vs low-dose corticosteroids with optional cyclophosphamide in relapsed and refractory multiple myeloma (FOCUS). Leukemia. 2016; 31(1):107-114.
PMC: 5220126.
DOI: 10.1038/leu.2016.176.
View