6.
Warner J, McIntosh K
. How common are extraribosomal functions of ribosomal proteins?. Mol Cell. 2009; 34(1):3-11.
PMC: 2679180.
DOI: 10.1016/j.molcel.2009.03.006.
View
7.
Nakada S, Ogasawara R, Kawada S, Maekawa T, Ishii N
. Correlation between Ribosome Biogenesis and the Magnitude of Hypertrophy in Overloaded Skeletal Muscle. PLoS One. 2016; 11(1):e0147284.
PMC: 4732984.
DOI: 10.1371/journal.pone.0147284.
View
8.
Figueiredo V, Caldow M, Massie V, Markworth J, Cameron-Smith D, Blazevich A
. Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab. 2015; 309(1):E72-83.
DOI: 10.1152/ajpendo.00050.2015.
View
9.
Haun C, Vann C, Mobley C, Osburn S, Mumford P, Roberson P
. Pre-training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men. Front Physiol. 2019; 10:297.
PMC: 6445136.
DOI: 10.3389/fphys.2019.00297.
View
10.
Stec M, Kelly N, Many G, Windham S, Tuggle S, Bamman M
. Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro. Am J Physiol Endocrinol Metab. 2016; 310(8):E652-E661.
PMC: 4835943.
DOI: 10.1152/ajpendo.00486.2015.
View
11.
von Walden F, Liu C, Aurigemma N, Nader G
. mTOR signaling regulates myotube hypertrophy by modulating protein synthesis, rDNA transcription, and chromatin remodeling. Am J Physiol Cell Physiol. 2016; 311(4):C663-C672.
DOI: 10.1152/ajpcell.00144.2016.
View
12.
Roberts M, McCarthy J, Hornberger T, Phillips S, Mackey A, Nader G
. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev. 2023; 103(4):2679-2757.
PMC: 10625844.
DOI: 10.1152/physrev.00039.2022.
View
13.
Hirsch C
. Quantitative determination of the ribosomal ribonucleic acid content of liver and Novikoff hepatoma from fed and from fasted rats. J Biol Chem. 1967; 242(12):2822-7.
View
14.
Adams G, Cheng D, Haddad F, Baldwin K
. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol (1985). 2004; 96(5):1613-8.
DOI: 10.1152/japplphysiol.01162.2003.
View
15.
OReilly J, Ono-Moore K, Chintapalli S, Rutkowsky J, Tolentino T, Lloyd K
. Sex differences in skeletal muscle revealed through fiber type, capillarity, and transcriptomics profiling in mice. Physiol Rep. 2021; 9(18):e15031.
PMC: 8453262.
DOI: 10.14814/phy2.15031.
View
16.
Makhnovskii P, Zgoda V, Bokov R, Shagimardanova E, Gazizova G, Gusev O
. Regulation of Proteins in Human Skeletal Muscle: The Role of Transcription. Sci Rep. 2020; 10(1):3514.
PMC: 7044165.
DOI: 10.1038/s41598-020-60578-2.
View
17.
Green R, Noller H
. Ribosomes and translation. Annu Rev Biochem. 1997; 66:679-716.
DOI: 10.1146/annurev.biochem.66.1.679.
View
18.
Chaillou T, Kirby T, McCarthy J
. Ribosome biogenesis: emerging evidence for a central role in the regulation of skeletal muscle mass. J Cell Physiol. 2014; 229(11):1584-94.
PMC: 4868551.
DOI: 10.1002/jcp.24604.
View
19.
Hammarstrom D, Ofsteng S, Jacobsen N, Flobergseter K, Ronnestad B, Ellefsen S
. Ribosome accumulation during early phase resistance training in humans. Acta Physiol (Oxf). 2022; 235(1):e13806.
PMC: 9540306.
DOI: 10.1111/apha.13806.
View
20.
Wen Y, Vechetti Jr I, Valentino T, McCarthy J
. High-yield skeletal muscle protein recovery from TRIzol after RNA and DNA extraction. Biotechniques. 2020; 69(4):264-269.
PMC: 7566772.
DOI: 10.2144/btn-2020-0083.
View