6.
Ye K, Li F, Wang R, Cen T, Liu S, Zhao Z
. An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ. Mol Ther. 2022; 30(12):3658-3676.
PMC: 9734027.
DOI: 10.1016/j.ymthe.2022.06.010.
View
7.
Menk A, Scharping N, Rivadeneira D, Calderon M, Watson M, Dunstane D
. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med. 2018; 215(4):1091-1100.
PMC: 5881463.
DOI: 10.1084/jem.20171068.
View
8.
Kaufman H, Bines S
. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol. 2010; 6(6):941-9.
DOI: 10.2217/fon.10.66.
View
9.
Cheng W, Kang K, Zhao A, Wu Y
. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol. 2024; 17(1):54.
PMC: 11283714.
DOI: 10.1186/s13045-024-01581-2.
View
10.
Ducreux M, Cuhna A, Caramella C, Hollebecque A, Burtin P, Goere D
. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015; 26 Suppl 5:v56-68.
DOI: 10.1093/annonc/mdv295.
View
11.
Lin C, Li H, Hao M, Xiong D, Luo Y, Huang C
. Increasing the Efficiency of CRISPR/Cas9-mediated Precise Genome Editing of HSV-1 Virus in Human Cells. Sci Rep. 2016; 6:34531.
PMC: 5054376.
DOI: 10.1038/srep34531.
View
12.
Eissa I, Bustos-Villalobos I, Ichinose T, Matsumura S, Naoe Y, Miyajima N
. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers (Basel). 2018; 10(10).
PMC: 6210336.
DOI: 10.3390/cancers10100356.
View
13.
Toda M, Rabkin S, Kojima H, Martuza R
. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther. 1999; 10(3):385-93.
DOI: 10.1089/10430349950018832.
View
14.
Kim H, Park S, Jeong S, Lee Y, Lee H, Kim C
. 4-1BB Delineates Distinct Activation Status of Exhausted Tumor-Infiltrating CD8 T Cells in Hepatocellular Carcinoma. Hepatology. 2019; 71(3):955-971.
PMC: 7154753.
DOI: 10.1002/hep.30881.
View
15.
Wang R, Chen J, Wang W, Zhao Z, Wang H, Liu S
. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J Immunother Cancer. 2022; 10(1).
PMC: 8796271.
DOI: 10.1136/jitc-2021-003809.
View
16.
Palanivelu L, Liu C, Lin L
. Immunogenic cell death: The cornerstone of oncolytic viro-immunotherapy. Front Immunol. 2023; 13:1038226.
PMC: 9899992.
DOI: 10.3389/fimmu.2022.1038226.
View
17.
Long A, Haso W, Shern J, Wanhainen K, Murgai M, Ingaramo M
. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015; 21(6):581-90.
PMC: 4458184.
DOI: 10.1038/nm.3838.
View
18.
Liu B, Robinson M, Han Z, Branston R, English C, Reay P
. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003; 10(4):292-303.
DOI: 10.1038/sj.gt.3301885.
View
19.
Zhao J, Wang H, Chen J, Wang C, Gong N, Zhou F
. An oncolytic HSV-1 armed with Visfatin enhances antitumor effects by remodeling tumor microenvironment against murine pancreatic cancer. Biochem Biophys Res Commun. 2024; 718:149931.
DOI: 10.1016/j.bbrc.2024.149931.
View
20.
Wherry E
. T cell exhaustion. Nat Immunol. 2011; 12(6):492-9.
DOI: 10.1038/ni.2035.
View