6.
Vidal C, Ruiz A, Ortiz J, Larama G, Perez R, Santander C
. Antioxidant Responses of Phenolic Compounds and Immobilization of Copper in , a Plant with Potential Use for Bioremediation of Cu Contaminated Environments. Plants (Basel). 2020; 9(10).
PMC: 7589974.
DOI: 10.3390/plants9101397.
View
7.
Gill S, Tuteja N
. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010; 48(12):909-30.
DOI: 10.1016/j.plaphy.2010.08.016.
View
8.
Filipsky T, Riha M, Macakova K, Anzenbacherova E, Karlickova J, Mladenka P
. Antioxidant effects of coumarins include direct radical scavenging, metal chelation and inhibition of ROS-producing enzymes. Curr Top Med Chem. 2015; 15(5):415-31.
DOI: 10.2174/1568026615666150206152233.
View
9.
Zhao X, Song B, Riaz M, Li M, Lal M, Adil M
. Foliar zinc spraying improves assimilative capacity of sugar beet leaves by promoting magnesium and calcium uptake and enhancing photochemical performance. Plant Physiol Biochem. 2023; 206:108277.
DOI: 10.1016/j.plaphy.2023.108277.
View
10.
Thomas G, Andresen E, Mattusch J, Hubacek T, Kupper H
. Deficiency and toxicity of nanomolar copper in low irradiance-A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum. Aquat Toxicol. 2016; 177:226-36.
DOI: 10.1016/j.aquatox.2016.05.016.
View
11.
Brooker N, Windorski J, Bluml E
. Halogenated coumarin derivatives as novel seed protectants. Commun Agric Appl Biol Sci. 2009; 73(2):81-9.
View
12.
Mostofa M, Fujita M
. Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology. 2013; 22(6):959-73.
DOI: 10.1007/s10646-013-1073-x.
View
13.
Li Q, Chen L, Jiang H, Tang N, Yang L, Lin Z
. Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biol. 2010; 10:42.
PMC: 2848762.
DOI: 10.1186/1471-2229-10-42.
View
14.
Esfahani M, Inoue K, Nguyen K, Chu H, Watanabe Y, Kanatani A
. Phosphate or nitrate imbalance induces stronger molecular responses than combined nutrient deprivation in roots and leaves of chickpea plants. Plant Cell Environ. 2020; 44(2):574-597.
DOI: 10.1111/pce.13935.
View
15.
Zhang J, Chen X, Huang W, Chen H, Huang Z, Ye X
. High pH Alleviated Sweet Orange () Copper Toxicity by Enhancing the Capacity to Maintain a Balance between Formation and Removal of Reactive Oxygen Species and Methylglyoxal in Leaves and Roots. Int J Mol Sci. 2022; 23(22).
PMC: 9698688.
DOI: 10.3390/ijms232213896.
View
16.
Chen L, Cheng L
. Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L cv Concord) leaves in response to N limitation. J Exp Bot. 2003; 54(390):2165-75.
DOI: 10.1093/jxb/erg220.
View
17.
Landi M
. Commentary to: "Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds" by Hodges et al., Planta (1999) 207:604-611. Planta. 2017; 245(6):1067.
DOI: 10.1007/s00425-017-2699-3.
View
18.
Chen L, Qi Y, Liu X
. Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Ann Bot. 2005; 96(1):35-41.
PMC: 4246804.
DOI: 10.1093/aob/mci145.
View
19.
Lin Z, Chen L, Chen R, Zhang F, Jiang H, Tang N
. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol. 2009; 9:43.
PMC: 2685392.
DOI: 10.1186/1471-2229-9-43.
View
20.
Jiang H, Chen L, Zheng J, Han S, Tang N, Smith B
. Aluminum-induced effects on Photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol. 2009; 28(12):1863-71.
DOI: 10.1093/treephys/28.12.1863.
View