6.
Driscoll C, Mason R, Chan H, Jacob D, Pirrone N
. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013; 47(10):4967-83.
PMC: 3701261.
DOI: 10.1021/es305071v.
View
7.
Rao M, Latha R, Nikhil K, Murthy B
. Atmospheric gaseous mercury and associated health risk assessment in the economic capital of India. Environ Monit Assess. 2024; 196(6):519.
DOI: 10.1007/s10661-024-12679-y.
View
8.
Edwards B, Kushner D, Outridge P, Wang F
. Fifty years of volcanic mercury emission research: Knowledge gaps and future directions. Sci Total Environ. 2020; 757:143800.
DOI: 10.1016/j.scitotenv.2020.143800.
View
9.
Park J, Zheng W
. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012; 45(6):344-52.
PMC: 3514464.
DOI: 10.3961/jpmph.2012.45.6.344.
View
10.
Yawei S, JianHai L, Junxiu Z, Xiaobo P, Zewu Q
. Epidemiology, clinical presentation, treatment, and follow-up of chronic mercury poisoning in China: a retrospective analysis. BMC Pharmacol Toxicol. 2021; 22(1):25.
PMC: 8091676.
DOI: 10.1186/s40360-021-00493-y.
View
11.
Zhao Y, Mann M, Olson E, Pavlish J, Dunham G
. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. J Air Waste Manag Assoc. 2006; 56(5):628-35.
DOI: 10.1080/10473289.2006.10464483.
View
12.
Sherman L, Blum J, Keeler G, Demers J, Dvonch J
. Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes. Environ Sci Technol. 2011; 46(1):382-90.
DOI: 10.1021/es202793c.
View
13.
Mor S, Vig N, Ravindra K
. Distribution of heavy metals in surface soil near a coal power production unit: potential risk to ecology and human health. Environ Monit Assess. 2022; 194(4):263.
DOI: 10.1007/s10661-021-09692-w.
View
14.
Ariya P, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G
. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chem Rev. 2015; 115(10):3760-802.
DOI: 10.1021/cr500667e.
View
15.
Lu R, Wu Y, Zhang X, Shen Y, Wu F, Xue Y
. [Distribution Characteristics and Source Analysis of Atmospheric Mercury Speciation in Suzhou]. Huan Jing Ke Xue. 2020; 41(7):3102-3111.
DOI: 10.13227/j.hjkx.201910076.
View
16.
Liu J, Wang L, Zhu Y, Lin C, Jang C, Wang S
. Source Attribution for Mercury Deposition with an Updated Atmospheric Mercury Emission Inventory in the Pearl River Delta Region, China. Front Environ Sci Eng. 2021; 13(1).
PMC: 7970520.
DOI: 10.1007/s11783-019-1087-6.
View
17.
Xu L, Chen J, Yang L, Niu Z, Tong L, Yin L
. Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere. 2014; 119:530-539.
DOI: 10.1016/j.chemosphere.2014.07.024.
View
18.
Chow J, Watson J, Chen L, Chang M, Robinson N, Trimble D
. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manag Assoc. 2007; 57(9):1014-23.
DOI: 10.3155/1047-3289.57.9.1014.
View
19.
Liu K, Wu Q, Wang S, Chang X, Tang Y, Wang L
. Improved atmospheric mercury simulation using updated gas-particle partition and organic aerosol concentrations. J Environ Sci (China). 2022; 119:106-118.
DOI: 10.1016/j.jes.2022.04.007.
View
20.
Choi H, Huang J, Mondal S, Holsen T
. Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State. Sci Total Environ. 2012; 448:96-106.
DOI: 10.1016/j.scitotenv.2012.08.052.
View