6.
Shakya A, Dodson M, Artiola J, Ramirez-Andreotta M, Root R, Ding X
. Arsenic in Drinking Water and Diabetes. Water (Basel). 2023; 15(9).
PMC: 10601382.
DOI: 10.3390/w15091751.
View
7.
Paul D, Hernandez-Zavala A, Walton F, Adair B, Dedina J, Matousek T
. Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: development of a mouse model for arsenic-induced diabetes. Toxicol Appl Pharmacol. 2007; 222(3):305-14.
PMC: 2680915.
DOI: 10.1016/j.taap.2007.01.010.
View
8.
Cao J, Yan W, Ma X, Huang H, Yan H
. Insulin-like Growth Factor 2 mRNA-Binding Protein 2-a Potential Link Between Type 2 Diabetes Mellitus and Cancer. J Clin Endocrinol Metab. 2021; 106(10):2807-2818.
PMC: 8475209.
DOI: 10.1210/clinem/dgab391.
View
9.
Balakrishnan B, Krishnasamy K, Mayakrishnan V, Selvaraj A
. Moringa concanensis Nimmo extracts ameliorates hyperglycemia-mediated oxidative stress and upregulates PPARγ and GLUT4 gene expression in liver and pancreas of streptozotocin-nicotinamide induced diabetic rats. Biomed Pharmacother. 2019; 112:108688.
DOI: 10.1016/j.biopha.2019.108688.
View
10.
Ahmad I, Suhail M, Ahmad A, Alhosin M, Tabrez S
. Interlinking of diabetes mellitus and cancer: An overview. Cell Biochem Funct. 2023; 41(5):506-516.
DOI: 10.1002/cbf.3802.
View
11.
Cai H, Jiang Z, Yang X, Lin J, Cai Q, Li X
. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocr J. 2019; 67(4):397-408.
DOI: 10.1507/endocrj.EJ19-0271.
View
12.
Vasu G, Sundaram R, Muthu K
. Chebulagic acid attenuates HFD/streptozotocin induced impaired glucose metabolism and insulin resistance via up regulations of PPAR γ and GLUT 4 in type 2 diabetic rats. Toxicol Mech Methods. 2021; 32(3):159-170.
DOI: 10.1080/15376516.2021.1976333.
View
13.
Irudayaraj S, Stalin A, Sunil C, Duraipandiyan V, Al-Dhabi N, Ignacimuthu S
. Antioxidant, antilipidemic and antidiabetic effects of ficusin with their effects on GLUT4 translocation and PPARγ expression in type 2 diabetic rats. Chem Biol Interact. 2016; 256:85-93.
DOI: 10.1016/j.cbi.2016.06.023.
View
14.
Chadt A, Al-Hasani H
. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020; 472(9):1273-1298.
PMC: 7462924.
DOI: 10.1007/s00424-020-02417-x.
View
15.
Jiang Y, Peng J, Song J, He J, Jiang M, Wang J
. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2. Nat Metab. 2021; 3(11):1569-1584.
PMC: 9235319.
DOI: 10.1038/s42255-021-00488-3.
View
16.
Sun J, Wu M, Wang L, Wang P, Xiao T, Wang S
. miRNA-21, which disrupts metabolic reprogramming to facilitate CD4 T cell polarization toward the Th2 phenotype, accelerates arsenite-induced hepatic fibrosis. Ecotoxicol Environ Saf. 2022; 248:114321.
DOI: 10.1016/j.ecoenv.2022.114321.
View
17.
Christiansen J, Kolte A, Hansen T, Nielsen F
. IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. J Mol Endocrinol. 2009; 43(5):187-95.
DOI: 10.1677/JME-09-0016.
View
18.
Odongo K, Abe A, Kawasaki R, Kawabata K, Ashida H
. Two Prenylated Chalcones, 4-Hydroxyderricin, and Xanthoangelol Prevent Postprandial Hyperglycemia by Promoting GLUT4 Translocation via the LKB1/AMPK Signaling Pathway in Skeletal Muscle Cells. Mol Nutr Food Res. 2024; 68(5):e2300538.
DOI: 10.1002/mnfr.202300538.
View
19.
Ge Z, Zhang P, Hong T, Tang S, Meng R, Bi Y
. Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation. Sci Rep. 2015; 5:17878.
PMC: 4672330.
DOI: 10.1038/srep17878.
View
20.
Li Z, Ren Y, Lv Z, Li M, Li Y, Fan X
. Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications. Biomed Pharmacother. 2023; 168:115744.
DOI: 10.1016/j.biopha.2023.115744.
View