6.
Ramirez M, Massolo S, Frache R, Correa J
. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar Pollut Bull. 2005; 50(1):62-72.
DOI: 10.1016/j.marpolbul.2004.08.010.
View
7.
Munir M, Irshad S, Yousaf B, Ali M, Dan C, Abbas Q
. Interactive assessment of lignite and bamboo-biochar for geochemical speciation, modulation and uptake of Cu and other heavy metals in the copper mine tailing. Sci Total Environ. 2021; 779:146536.
DOI: 10.1016/j.scitotenv.2021.146536.
View
8.
Kumar S, Prasad S, Yadav K, Shrivastava M, Gupta N, Nagar S
. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environ Res. 2019; 179(Pt A):108792.
DOI: 10.1016/j.envres.2019.108792.
View
9.
Munir M, Liu G, Yousaf B, Ali M, Abbas Q, Ullah H
. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere. 2019; 240:124845.
DOI: 10.1016/j.chemosphere.2019.124845.
View
10.
Wang Z, Jackson L, Jablonski J
. Factors Affecting the Levels of Heavy Metals in Juices Processed with Filter Aids. J Food Prot. 2017; 80(6):892-902.
DOI: 10.4315/0362-028X.JFP-16-464.
View
11.
Aponte H, Sulbaran-Bracho Y, Mondaca P, Vidal C, Perez R, Meier S
. Biochemical, Catabolic, and PGP Activity of Microbial Communities and Bacterial Strains from the Root Zone of in a Mediterranean Mine Tailing. Microorganisms. 2023; 11(11).
PMC: 10673359.
DOI: 10.3390/microorganisms11112639.
View
12.
Guo J, Lv X, Jia H, Hua L, Ren X, Muhammad H
. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance. J Environ Sci (China). 2019; 88:361-369.
DOI: 10.1016/j.jes.2019.10.001.
View
13.
Cameselle C, Chirakkara R, Reddy K
. Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere. 2013; 93(4):626-36.
DOI: 10.1016/j.chemosphere.2013.06.029.
View
14.
Yin F, Li J, Wang Y, Yang Z
. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. Ecotoxicol Environ Saf. 2024; 272:116113.
DOI: 10.1016/j.ecoenv.2024.116113.
View
15.
Stauber J, Andrade S, Ramirez M, Adams M, Correa J
. Copper bioavailability in a coastal environment of Northern Chile: comparison of bioassay and analytical speciation approaches. Mar Pollut Bull. 2005; 50(11):1363-72.
DOI: 10.1016/j.marpolbul.2005.05.008.
View
16.
Seck G, Hache E, Bonnet C, Simoen M, Carcanague S
. Copper at the crossroads: Assessment of the interactions between low-carbon energy transition and supply limitations. Resour Conserv Recycl. 2020; 163:105072.
PMC: 7391239.
DOI: 10.1016/j.resconrec.2020.105072.
View
17.
Wang L, Ji B, Hu Y, Liu R, Sun W
. A review on in situ phytoremediation of mine tailings. Chemosphere. 2017; 184:594-600.
DOI: 10.1016/j.chemosphere.2017.06.025.
View
18.
Liu X, Song Q, Tang Y, Li W, Xu J, Wu J
. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Sci Total Environ. 2013; 463-464:530-40.
DOI: 10.1016/j.scitotenv.2013.06.064.
View
19.
Doku E, Sylverken A, Belford J
. Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams. Int J Phytoremediation. 2024; 26(8):1212-1220.
DOI: 10.1080/15226514.2024.2301994.
View
20.
Clemens S, Weber M
. The essential role of coumarin secretion for Fe acquisition from alkaline soil. Plant Signal Behav. 2015; 11(2):e1114197.
PMC: 4883844.
DOI: 10.1080/15592324.2015.1114197.
View