6.
Cools T, Struyfs C, Drijfhout J, Kucharikova S, Romero C, Van Dijck P
. A Linear 19-Mer Plant Defensin-Derived Peptide Acts Synergistically with Caspofungin against Biofilms. Front Microbiol. 2017; 8:2051.
PMC: 5655031.
DOI: 10.3389/fmicb.2017.02051.
View
7.
Garcia-Rubio R, de Oliveira H, Rivera J, Trevijano-Contador N
. The Fungal Cell Wall: , , and Species. Front Microbiol. 2020; 10:2993.
PMC: 6962315.
DOI: 10.3389/fmicb.2019.02993.
View
8.
Kulshrestha A, Gupta P
. Secreted aspartyl proteases family: a perspective review on the regulation of fungal pathogenesis. Future Microbiol. 2023; 18:295-309.
DOI: 10.2217/fmb-2022-0143.
View
9.
Fathi F, Alizadeh B, Tabarzad M, Tabarzad M
. Important structural features of antimicrobial peptides towards specific activity: Trends in the development of efficient therapeutics. Bioorg Chem. 2024; 149:107524.
DOI: 10.1016/j.bioorg.2024.107524.
View
10.
Antoshina D, Balandin S, Finkina E, Bogdanov I, Eremchuk S, Kononova D
. Acidocin A and Acidocin 8912 Belong to a Distinct Subfamily of Class II Bacteriocins with a Broad Spectrum of Antimicrobial Activity. Int J Mol Sci. 2024; 25(18).
PMC: 11432624.
DOI: 10.3390/ijms251810059.
View
11.
Finkina E, Shevchenko O, Fateeva S, Tagaev A, Ovchinnikova T
. Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis. Plants (Basel). 2024; 13(11).
PMC: 11174490.
DOI: 10.3390/plants13111499.
View
12.
Liang X, Pacula-Miszewska A, Vartak R, Prajapati M, Zheng H, Zhao C
. -3-Methylbutyl-benzisoselenazol-3(2H)-one Exerts Antifungal Activity In Vitro and in a Mouse Model of Vulvovaginal Candidiasis. Curr Issues Mol Biol. 2024; 46(3):2480-2496.
PMC: 10969377.
DOI: 10.3390/cimb46030157.
View
13.
Andres M, Fierro P, Antuna V, Fierro J
. The Antimicrobial Activity of Human Defensins at Physiological Non-Permeabilizing Concentrations Is Caused by the Inhibition of the Plasma Membrane H-ATPases. Int J Mol Sci. 2024; 25(13).
PMC: 11242853.
DOI: 10.3390/ijms25137335.
View
14.
Cavalheiro M, Teixeira M
. Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne). 2018; 5:28.
PMC: 5816785.
DOI: 10.3389/fmed.2018.00028.
View
15.
Hayes B, Bleackley M, Wiltshire J, Anderson M, Traven A, van der Weerden N
. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother. 2013; 57(8):3667-75.
PMC: 3719733.
DOI: 10.1128/AAC.00365-13.
View
16.
Manzanares P, Giner-Llorca M, Marcos J, Garrigues S
. Fighting pathogenic yeasts with plant defensins and anti-fungal proteins from fungi. Appl Microbiol Biotechnol. 2024; 108(1):277.
PMC: 10973029.
DOI: 10.1007/s00253-024-13118-1.
View
17.
Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K
. Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control - An update. Microb Pathog. 2018; 117:128-138.
DOI: 10.1016/j.micpath.2018.02.028.
View
18.
Payne J, Bleackley M, Lee T, Shafee T, Poon I, Hulett M
. The plant defensin NaD1 introduces membrane disorder through a specific interaction with the lipid, phosphatidylinositol 4,5 bisphosphate. Biochim Biophys Acta. 2016; 1858(6):1099-109.
DOI: 10.1016/j.bbamem.2016.02.016.
View
19.
Finkina E, Bogdanov I, Shevchenko O, Fateeva S, Ignatova A, Balandin S
. Immunomodulatory Effects of the Tobacco Defensin NaD1. Antibiotics (Basel). 2024; 13(11).
PMC: 11591356.
DOI: 10.3390/antibiotics13111101.
View
20.
Cannon R, Lamping E, Holmes A, Niimi K, Baret P, Keniya M
. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009; 22(2):291-321, Table of Contents.
PMC: 2668233.
DOI: 10.1128/CMR.00051-08.
View