6.
Bobbert F, Lietaert K, Eftekhari A, Pouran B, Ahmadi S, Weinans H
. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017; 53:572-584.
DOI: 10.1016/j.actbio.2017.02.024.
View
7.
Maevskaia E, Guerrero J, Ghayor C, Bhattacharya I, Weber F
. Triply Periodic Minimal Surface-Based Scaffolds for Bone Tissue Engineering: A Mechanical, and Study. Tissue Eng Part A. 2023; 29(19-20):507-517.
PMC: 10611970.
DOI: 10.1089/ten.TEA.2023.0033.
View
8.
Radulescu D, Vasile O, Andronescu E, Ficai A
. Latest Research of Doped Hydroxyapatite for Bone Tissue Engineering. Int J Mol Sci. 2023; 24(17).
PMC: 10488011.
DOI: 10.3390/ijms241713157.
View
9.
Khalaf A, Wei Y, Wan J, Zhu J, Peng Y, Abdul Kadir S
. Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. Life (Basel). 2022; 12(6).
PMC: 9225502.
DOI: 10.3390/life12060903.
View
10.
Ma H, Feng C, Chang J, Wu C
. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018; 79:37-59.
DOI: 10.1016/j.actbio.2018.08.026.
View
11.
Liang H, Wang Y, Chen S, Liu Y, Liu Z, Bai J
. Nano-Hydroxyapatite Bone Scaffolds with Different Porous Structures Processed by Digital Light Processing 3D Printing. Int J Bioprint. 2022; 8(1):502.
PMC: 8852260.
DOI: 10.18063/ijb.v8i1.502.
View
12.
Alexander A, Wake N, Chepelev L, Brantner P, Ryan J, Wang K
. A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards. 3D Print Med. 2021; 7(1):8.
PMC: 7986506.
DOI: 10.1186/s41205-021-00098-5.
View
13.
Zhou Q, Su X, Wu J, Zhang X, Su R, Ma L
. Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives. ACS Biomater Sci Eng. 2023; 9(3):1164-1189.
DOI: 10.1021/acsbiomaterials.2c01164.
View
14.
Ghayor C, Weber F
. Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited. Front Physiol. 2018; 9:960.
PMC: 6060436.
DOI: 10.3389/fphys.2018.00960.
View
15.
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y
. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. Materials (Basel). 2022; 15(23).
PMC: 9738134.
DOI: 10.3390/ma15238475.
View
16.
Wong S, Yee M, Chin K, Ima-Nirwana S
. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater. 2023; 14(5).
PMC: 10218951.
DOI: 10.3390/jfb14050286.
View
17.
Goswami M, Rekhi P, Debnath M, Ramakrishna S
. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules. 2021; 26(4).
PMC: 7915662.
DOI: 10.3390/molecules26040860.
View
18.
Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J
. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. ACS Appl Mater Interfaces. 2015; 7(43):24377-83.
DOI: 10.1021/acsami.5b08911.
View
19.
Mahmoud E, Sayed M, El-Kady A, Elsayed H, Naga S
. In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. Int J Biol Macromol. 2020; 165(Pt A):1346-1360.
DOI: 10.1016/j.ijbiomac.2020.10.014.
View
20.
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G
. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci. 2023; 11(21):7034-7050.
DOI: 10.1039/d3bm01214j.
View