6.
Hwang H, Kim J, Chung H, Seo J, Kim S, Kim N
. Knockdown of Sestrin2 Increases Lipopolysaccharide-Induced Oxidative Stress, Apoptosis, and Fibrotic Reactions in H9c2 Cells and Heart Tissues of Mice via an AMPK-Dependent Mechanism. Mediators Inflamm. 2018; 2018:6209140.
PMC: 6079459.
DOI: 10.1155/2018/6209140.
View
7.
Zahid M, Abdelsalam S, Raiq H, Parray A, Korashy H, Zeidan A
. Sestrin2 as a Protective Shield against Cardiovascular Disease. Int J Mol Sci. 2023; 24(5).
PMC: 10003517.
DOI: 10.3390/ijms24054880.
View
8.
Mussbacher M, Schossleitner K, Kral-Pointner J, Salzmann M, Schrammel A, Schmid J
. More than Just a Monolayer: the Multifaceted Role of Endothelial Cells in the Pathophysiology of Atherosclerosis. Curr Atheroscler Rep. 2022; 24(6):483-492.
PMC: 9162978.
DOI: 10.1007/s11883-022-01023-9.
View
9.
Drozdz D, Drozdz M, Wojcik M
. Endothelial dysfunction as a factor leading to arterial hypertension. Pediatr Nephrol. 2022; 38(9):2973-2985.
PMC: 10432334.
DOI: 10.1007/s00467-022-05802-z.
View
10.
Campos J, Ponomaryov T, De Prendergast A, Whitworth K, Smith C, Khan A
. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv. 2021; 5(9):2319-2324.
PMC: 8114549.
DOI: 10.1182/bloodadvances.2020003377.
View
11.
Kishimoto Y, Kondo K, Momiyama Y
. The Protective Role of Sestrin2 in Atherosclerotic and Cardiac Diseases. Int J Mol Sci. 2021; 22(3).
PMC: 7865804.
DOI: 10.3390/ijms22031200.
View
12.
Xue C, Chen K, Gao Z, Bao T, Dong L, Zhao L
. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal. 2023; 21(1):298.
PMC: 10614351.
DOI: 10.1186/s12964-022-01016-w.
View
13.
Wu D, Zhang H, Wu Q, Li F, Wang Y, Liu S
. Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages. Life Sci. 2020; 267:118941.
DOI: 10.1016/j.lfs.2020.118941.
View
14.
An S, Nedumaran B, Koh H, Joo D, Lee H, Park C
. Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway. Exp Mol Med. 2023; 55(7):1556-1569.
PMC: 10393991.
DOI: 10.1038/s12276-023-01040-x.
View
15.
Watany M, El-Horany H, Elhosary M, Elhadidy A
. Clinical application of RUBCN/SESN2 mediated inhibition of autophagy as biomarkers of diabetic kidney disease. Mol Med. 2022; 28(1):147.
PMC: 9730641.
DOI: 10.1186/s10020-022-00580-8.
View
16.
Xu S, Ilyas I, Little P, Li H, Kamato D, Zheng X
. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev. 2021; 73(3):924-967.
DOI: 10.1124/pharmrev.120.000096.
View
17.
Yoshimatsu Y, Watabe T
. Emerging roles of inflammation-mediated endothelial-mesenchymal transition in health and disease. Inflamm Regen. 2022; 42(1):9.
PMC: 8818500.
DOI: 10.1186/s41232-021-00186-3.
View
18.
Pasha M, Eid A, Eid A, Gorin Y, Munusamy S
. Sestrin2 as a Novel Biomarker and Therapeutic Target for Various Diseases. Oxid Med Cell Longev. 2017; 2017:3296294.
PMC: 5485329.
DOI: 10.1155/2017/3296294.
View
19.
Wang E, Wang H, Chakrabarti S
. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne). 2023; 14:1050540.
PMC: 9911675.
DOI: 10.3389/fendo.2023.1050540.
View
20.
Piera-Velazquez S, Jimenez S
. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev. 2019; 99(2):1281-1324.
PMC: 6734087.
DOI: 10.1152/physrev.00021.2018.
View