» Articles » PMID: 39764521

Computational Approaches for Enteric Methane Mitigation Research: from Fermi Calculations to Artificial Intelligence Paradigms

Overview
Journal Anim Front
Date 2025 Jan 7
PMID 39764521
Authors
Affiliations
Soon will be listed here.
Citing Articles

Exploring putative enteric methanogenesis inhibitors using molecular simulations and a graph neural network.

Aryee R, Mohammed N, Dey S, Arunraj B, Nadendla S, Sajeevan K bioRxiv. 2024; .

PMID: 39345548 PMC: 11429904. DOI: 10.1101/2024.09.16.613350.

References
1.
Kumar A, Wang L, Ng C, Maranas C . Pathway design using de novo steps through uncharted biochemical spaces. Nat Commun. 2018; 9(1):184. PMC: 5766603. DOI: 10.1038/s41467-017-02362-x. View

2.
Thompson L, Beck M, Buskirk D, Rowntree J, McKendree M . Cow efficiency: modeling the biological and economic output of a Michigan beef herd. Transl Anim Sci. 2020; 4(3):txaa166. PMC: 7751152. DOI: 10.1093/tas/txaa166. View

3.
Chowdhury R, Bouatta N, Biswas S, Floristean C, Kharkar A, Roy K . Single-sequence protein structure prediction using a language model and deep learning. Nat Biotechnol. 2022; 40(11):1617-1623. PMC: 10440047. DOI: 10.1038/s41587-022-01432-w. View

4.
Visan A, Negut I . Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel). 2024; 14(2). PMC: 10890405. DOI: 10.3390/life14020233. View

5.
Arndt C, Hristov A, Price W, McClelland S, Pelaez A, Cueva S . Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc Natl Acad Sci U S A. 2022; 119(20):e2111294119. PMC: 9171756. DOI: 10.1073/pnas.2111294119. View