» Articles » PMID: 39763957

Red-shifted GRAB Acetylcholine Sensors for Multiplex Imaging

Overview
Journal bioRxiv
Date 2025 Jan 7
PMID 39763957
Authors
Affiliations
Soon will be listed here.
Abstract

The neurotransmitter acetylcholine (ACh) is essential in both the central and peripheral nervous systems. Recent studies highlight the significance of interactions between ACh and various neuromodulators in regulating complex behaviors. The ability to simultaneously image ACh and other neuromodulators can provide valuable information regarding the mechanisms underlying these behaviors. Here, we developed a series of red fluorescent G protein-coupled receptor activation-based (GRAB) ACh sensors, with a wide detection range and expanded spectral profile. The high-affinity sensor, rACh1h, reliably detects ACh release in various brain regions, including the nucleus accumbens, amygdala, hippocampus, and cortex. Moreover, rACh1h can be co-expressed with green fluorescent sensors in order to record ACh release together with other neurochemicals in various behavioral contexts using fiber photometry and two-photon imaging, with high spatiotemporal resolution. These new ACh sensors can therefore provide valuable new insights regarding the functional role of the cholinergic system under both physiological and pathological conditions.

References
1.
Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X . Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods. 2020; 17(11):1156-1166. PMC: 7648260. DOI: 10.1038/s41592-020-00981-9. View

2.
Ballinger E, Ananth M, Talmage D, Role L . Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron. 2016; 91(6):1199-1218. PMC: 5036520. DOI: 10.1016/j.neuron.2016.09.006. View

3.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P . Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003; 100(24):13940-5. PMC: 283525. DOI: 10.1073/pnas.1936192100. View

4.
Zhou F, Liang Y, Dani J . Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci. 2001; 4(12):1224-9. DOI: 10.1038/nn769. View

5.
Wan Q, Okashah N, Inoue A, Nehme R, Carpenter B, Tate C . Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J Biol Chem. 2018; 293(19):7466-7473. PMC: 5949987. DOI: 10.1074/jbc.RA118.001975. View