6.
Herring A
. Nonparametric bayes shrinkage for assessing exposures to mixtures subject to limits of detection. Epidemiology. 2010; 21 Suppl 4:S71-6.
PMC: 3447742.
DOI: 10.1097/EDE.0b013e3181cf0058.
View
7.
Taylor K, Joubert B, Braun J, Dilworth C, Gennings C, Hauser R
. Statistical Approaches for Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology: Lessons from an Innovative Workshop. Environ Health Perspect. 2016; 124(12):A227-A229.
PMC: 5132642.
DOI: 10.1289/EHP547.
View
8.
Mitro S, Birnbaum L, Needham B, Zota A
. Cross-sectional Associations between Exposure to Persistent Organic Pollutants and Leukocyte Telomere Length among U.S. Adults in NHANES, 2001-2002. Environ Health Perspect. 2015; 124(5):651-8.
PMC: 4858394.
DOI: 10.1289/ehp.1510187.
View
9.
Coker E, Liverani S, Su J, Molitor J
. Multi-pollutant Modeling Through Examination of Susceptible Subpopulations Using Profile Regression. Curr Environ Health Rep. 2018; 5(1):59-69.
DOI: 10.1007/s40572-018-0177-0.
View
10.
Renzetti S, Gennings C, Calza S
. A weighted quantile sum regression with penalized weights and two indices. Front Public Health. 2023; 11:1151821.
PMC: 10392701.
DOI: 10.3389/fpubh.2023.1151821.
View
11.
Kowal D, Bravo M, Leong H, Bui A, Griffin R, Ensor K
. Bayesian variable selection for understanding mixtures in environmental exposures. Stat Med. 2021; 40(22):4850-4871.
PMC: 8440371.
DOI: 10.1002/sim.9099.
View
12.
Davalos A, Luben T, Herring A, Sacks J
. Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures. Ann Epidemiol. 2017; 27(2):145-153.e1.
PMC: 5313327.
DOI: 10.1016/j.annepidem.2016.11.016.
View
13.
White I, Royston P, Wood A
. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. 2011; 30(4):377-99.
DOI: 10.1002/sim.4067.
View
14.
Goodrich J, Wang H, Jia Q, Stratakis N, Zhao Y, Maitre L
. Integrating Multi-Omics with environmental data for precision health: A novel analytic framework and case study on prenatal mercury induced childhood fatty liver disease. Environ Int. 2024; 190:108930.
PMC: 11620538.
DOI: 10.1016/j.envint.2024.108930.
View
15.
Bellavia A, James-Todd T, Williams P
. Approaches for incorporating environmental mixtures as mediators in mediation analysis. Environ Int. 2018; 123:368-374.
PMC: 6367715.
DOI: 10.1016/j.envint.2018.12.024.
View
16.
Lubin J, Colt J, Camann D, Davis S, Cerhan J, Severson R
. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ Health Perspect. 2004; 112(17):1691-6.
PMC: 1253661.
DOI: 10.1289/ehp.7199.
View
17.
Bauer J, Devick K, Bobb J, Coull B, Bellinger D, Benedetti C
. Associations of a Metal Mixture Measured in Multiple Biomarkers with IQ: Evidence from Italian Adolescents Living near Ferroalloy Industry. Environ Health Perspect. 2020; 128(9):97002.
PMC: 7478128.
DOI: 10.1289/EHP6803.
View
18.
Miller G
. The exposome at NIEHS: from workshops to manuscripts. Exposome. 2023; 3(1):osad011.
PMC: 10689254.
DOI: 10.1093/exposome/osad011.
View
19.
Mutiso F, Li H, Pearce J, Benjamin-Neelon S, Mueller N, Neelon B
. Bayesian kernel machine regression for count data: modelling the association between social vulnerability and COVID-19 deaths in South Carolina. J R Stat Soc Ser C Appl Stat. 2024; 73(1):257-274.
PMC: 10782459.
DOI: 10.1093/jrsssc/qlad094.
View
20.
Bennett D, Busgang S, Kannan K, Parsons P, Takazawa M, Palmer C
. Environmental exposures to pesticides, phthalates, phenols and trace elements are associated with neurodevelopment in the CHARGE study. Environ Int. 2022; 161:107075.
PMC: 9317896.
DOI: 10.1016/j.envint.2021.107075.
View