» Articles » PMID: 39762406

Interpretable Machine Learning for Predicting Sepsis Risk in Emergency Triage Patients

Overview
Journal Sci Rep
Specialty Science
Date 2025 Jan 6
PMID 39762406
Authors
Affiliations
Soon will be listed here.
Abstract

The study aimed to develop and validate a sepsis prediction model using structured electronic medical records (sEMR) and machine learning (ML) methods in emergency triage. The goal was to enhance early sepsis screening by integrating comprehensive triage information beyond vital signs. This retrospective cohort study utilized data from the MIMIC-IV database. Two models were developed: Model 1 based on vital signs alone, and Model 2 incorporating vital signs, demographic characteristics, medical history, and chief complaints. Eight ML algorithms were employed, and model performance was evaluated using metrics such as AUC, F1 Score, and calibration curves. SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) methods were used to enhance model interpretability. The study included 189,617 patients, with 5.95% diagnosed with sepsis. Model 2 consistently outperformed Model 1 across most algorithms. In Model 2, Gradient Boosting achieved the highest AUC of 0.83, followed by Extra Tree, Random Forest, and Support Vector Machine (all 0.82). The SHAP method provided more comprehensible explanations for the Gradient Boosting algorithm. Modeling with comprehensive triage information using sEMR and ML methods was more effective in predicting sepsis at triage compared to using vital signs alone. Interpretable ML enhanced model transparency and provided sepsis prediction probabilities, offering a feasible approach for early sepsis screening and aiding healthcare professionals in making informed decisions during the triage process.

References
1.
Fernandes M, Vieira S, Leite F, Palos C, Finkelstein S, Sousa J . Clinical Decision Support Systems for Triage in the Emergency Department using Intelligent Systems: a Review. Artif Intell Med. 2020; 102:101762. DOI: 10.1016/j.artmed.2019.101762. View

2.
Rahmatinejad Z, Hoseini B, Reihani H, Hanna A, Pourmand A, Tabatabaei S . Comparison of Six Scoring Systems for Predicting In-hospital Mortality among Patients with SARS-COV2 Presenting to the Emergency Department. Indian J Crit Care Med. 2023; 27(6):416-425. PMC: 10291668. DOI: 10.5005/jp-journals-10071-24463. View

3.
Filbin M, Thorsen J, Lynch J, Gillingham T, Pasakarnis C, Capp R . Challenges and Opportunities for Emergency Department Sepsis Screening at Triage. Sci Rep. 2018; 8(1):11059. PMC: 6056466. DOI: 10.1038/s41598-018-29427-1. View

4.
Collins G, Reitsma J, Altman D, Moons K . Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015; 350:g7594. DOI: 10.1136/bmj.g7594. View

5.
Baig M, Sheikh S, Hussain E, Bakhtawar S, Subhan Khan M, Mujtaba S . Comparison of qSOFA and SOFA score for predicting mortality in severe sepsis and septic shock patients in the emergency department of a low middle income country. Turk J Emerg Med. 2018; 18(4):148-151. PMC: 6261097. DOI: 10.1016/j.tjem.2018.08.002. View