6.
Kumar V, Kancharla S, Kolli P, Jena M
. Reverse vaccinology approach towards the in-silico multiepitope vaccine development against SARS-CoV-2. F1000Res. 2021; 10:44.
PMC: 8009247.
DOI: 10.12688/f1000research.36371.1.
View
7.
Jhong J, Yao L, Pang Y, Li Z, Chung C, Wang R
. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res. 2021; 50(D1):D460-D470.
PMC: 8690246.
DOI: 10.1093/nar/gkab1080.
View
8.
Mechkarska M, Attoub S, Sulaiman S, Pantic J, Lukic M, Conlon J
. Anti-cancer, immunoregulatory, and antimicrobial activities of the frog skin host-defense peptides pseudhymenochirin-1Pb and pseudhymenochirin-2Pa. Regul Pept. 2014; 194-195:69-76.
DOI: 10.1016/j.regpep.2014.11.001.
View
9.
Kavanagh K, Dowd S
. Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol. 2004; 56(3):285-9.
DOI: 10.1211/0022357022971.
View
10.
Rahmani A, Baee M, Saleki K, Moradi S, Nouri H
. Applying high throughput and comprehensive immunoinformatics approaches to design a trivalent subunit vaccine for induction of immune response against emerging human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. J Biomol Struct Dyn. 2021; 40(13):6097-6113.
PMC: 7852294.
DOI: 10.1080/07391102.2021.1876774.
View
11.
Shapira E, Brodsky B, Proscura E, Nyska A, Erlanger-Rosengarten A, Wormser U
. Amelioration of experimental autoimmune encephalitis by novel peptides: involvement of T regulatory cells. J Autoimmun. 2010; 35(1):98-106.
DOI: 10.1016/j.jaut.2010.03.004.
View
12.
Lyapina I, Filippova A, Fesenko I
. The Role of Peptide Signals Hidden in the Structure of Functional Proteins in Plant Immune Responses. Int J Mol Sci. 2019; 20(18).
PMC: 6770897.
DOI: 10.3390/ijms20184343.
View
13.
Guryanova S, Ovchinnikova T
. Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int J Mol Sci. 2022; 23(5).
PMC: 8910669.
DOI: 10.3390/ijms23052499.
View
14.
Miles K, Clarke D, Lu W, Sibinska Z, Beaumont P, Davidson D
. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol. 2009; 183(3):2122-32.
PMC: 2948539.
DOI: 10.4049/jimmunol.0804187.
View
15.
Alibardi L
. Histochemical, Biochemical and Cell Biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration. Prog Histochem Cytochem. 2014; 48(4):143-244.
DOI: 10.1016/j.proghi.2013.12.001.
View
16.
Javed A, Oedairadjsingh T, Ludwig I, Wood T, Martin N, Broere F
. Antimicrobial and immunomodulatory activities of porcine cathelicidin Protegrin-1. Mol Immunol. 2024; 173:100-109.
DOI: 10.1016/j.molimm.2024.07.011.
View
17.
Pantic J, Jovanovic I, Radosavljevic G, Arsenijevic N, Conlon J, Lukic M
. The Potential of Frog Skin-Derived Peptides for Development into Therapeutically-Valuable Immunomodulatory Agents. Molecules. 2017; 22(12).
PMC: 6150033.
DOI: 10.3390/molecules22122071.
View
18.
Attoub S, Mechkarska M, Sonnevend A, Radosavljevic G, Jovanovic I, Lukic M
. Esculentin-2CHa: a host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides. 2012; 39:95-102.
DOI: 10.1016/j.peptides.2012.11.004.
View
19.
Popovic S, Urban E, Lukic M, Conlon J
. Peptides with antimicrobial and anti-inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides. 2012; 34(2):275-82.
DOI: 10.1016/j.peptides.2012.02.010.
View
20.
Kuhnle N, Dederer V, Lemberg M
. Intramembrane proteolysis at a glance: from signalling to protein degradation. J Cell Sci. 2019; 132(16).
DOI: 10.1242/jcs.217745.
View