6.
Kabir A, Muth A
. Polypharmacology: The science of multi-targeting molecules. Pharmacol Res. 2022; 176:106055.
DOI: 10.1016/j.phrs.2021.106055.
View
7.
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A
. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020; 587(7835):657-662.
PMC: 7116779.
DOI: 10.1038/s41586-020-2601-5.
View
8.
Alzyoud L, Ghattas M, Atatreh N
. Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents. Drug Des Devel Ther. 2022; 16:2463-2478.
PMC: 9356625.
DOI: 10.2147/DDDT.S370574.
View
9.
Kneller D, Li H, Phillips G, Weiss K, Zhang Q, Arnould M
. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nat Commun. 2022; 13(1):2268.
PMC: 9046211.
DOI: 10.1038/s41467-022-29915-z.
View
10.
Klemm T, Ebert G, Calleja D, Allison C, Richardson L, Bernardini J
. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020; 39(18):e106275.
PMC: 7461020.
DOI: 10.15252/embj.2020106275.
View
11.
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y
. Structure of M from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582(7811):289-293.
DOI: 10.1038/s41586-020-2223-y.
View
12.
Davis D, Bulut H, Shrestha P, Yaparla A, Jaeger H, Hattori S
. Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. mBio. 2021; 12(4):e0209421.
PMC: 8406260.
DOI: 10.1128/mBio.02094-21.
View
13.
Liu M, Sun W, Shen L, He Y, Liu J, Wang J
. Bipolarolides A-G: Ophiobolin-Derived Sesterterpenes with Three New Carbon Skeletons from Bipolaris sp. TJ403-B1. Angew Chem Int Ed Engl. 2019; 58(35):12091-12095.
DOI: 10.1002/anie.201905966.
View
14.
Guo Y, Huang F, Sun W, Zhou Y, Chen C, Qi C
. Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer's activity from St. John's wort. Chem Sci. 2021; 12(34):11438-11446.
PMC: 8409492.
DOI: 10.1039/d1sc03356e.
View
15.
Qiao J, Li Y, Zeng R, Liu F, Luo R, Huang C
. SARS-CoV-2 M inhibitors with antiviral activity in a transgenic mouse model. Science. 2021; 371(6536):1374-1378.
PMC: 8099175.
DOI: 10.1126/science.abf1611.
View
16.
Valdes-Tresanco M, Valdes-Tresanco M, Valiente P, Moreno E
. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J Chem Theory Comput. 2021; 17(10):6281-6291.
DOI: 10.1021/acs.jctc.1c00645.
View
17.
Ferreira J, Fadl S, Rabeh W
. Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2. J Biol Chem. 2022; 298(6):102023.
PMC: 9091064.
DOI: 10.1016/j.jbc.2022.102023.
View
18.
Yuce M, Cicek E, Inan T, Dag A, Kurkcuoglu O, Sungur F
. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins. 2021; 89(11):1425-1441.
PMC: 8441840.
DOI: 10.1002/prot.26164.
View
19.
Yang H, Rao Z
. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol. 2021; 19(11):685-700.
PMC: 8447893.
DOI: 10.1038/s41579-021-00630-8.
View
20.
Fu L, Shi S, Yi J, Wang N, He Y, Wu Z
. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024; 52(W1):W422-W431.
PMC: 11223840.
DOI: 10.1093/nar/gkae236.
View