6.
Wells J
. Efficient office design for a successful practice. Fam Pract Manag. 2007; 14(5):46-50.
View
7.
Lin D, Blumenkranz M, Brothers R, Grosvenor D
. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol. 2002; 134(2):204-13.
DOI: 10.1016/s0002-9394(02)01522-2.
View
8.
Wolf R, Liu T, Thomas C, Prichett L, Zimmer-Galler I, Smith K
. The SEE Study: Safety, Efficacy, and Equity of Implementing Autonomous Artificial Intelligence for Diagnosing Diabetic Retinopathy in Youth. Diabetes Care. 2021; 44(3):781-787.
DOI: 10.2337/dc20-1671.
View
9.
Frank R, Jarrin R, Pritzker J, Abramoff M, Repka M, Baird P
. Developing current procedural terminology codes that describe the work performed by machines. NPJ Digit Med. 2022; 5(1):177.
PMC: 9719561.
DOI: 10.1038/s41746-022-00723-5.
View
10.
Bhaskaranand M, Ramachandra C, Bhat S, Cuadros J, Nittala M, Sadda S
. The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes. Diabetes Technol Ther. 2019; 21(11):635-643.
PMC: 6812728.
DOI: 10.1089/dia.2019.0164.
View
11.
Bjornstad P, Drews K, Zeitler P
. Long-Term Complications in Youth-Onset Type 2 Diabetes. Reply. N Engl J Med. 2021; 385(21):2016.
PMC: 8957477.
DOI: 10.1056/NEJMc2114053.
View
12.
Liu J, Gibson E, Ramchal S, Shankar V, Piggott K, Sychev Y
. Diabetic Retinopathy Screening with Automated Retinal Image Analysis in a Primary Care Setting Improves Adherence to Ophthalmic Care. Ophthalmol Retina. 2020; 5(1):71-77.
PMC: 8546907.
DOI: 10.1016/j.oret.2020.06.016.
View
13.
Pugh J, Jacobson J, van Heuven W, Watters J, Tuley M, Lairson D
. Screening for diabetic retinopathy. The wide-angle retinal camera. Diabetes Care. 1993; 16(6):889-95.
DOI: 10.2337/diacare.16.6.889.
View
14.
Keel G, Savage C, Rafiq M, Mazzocato P
. Time-driven activity-based costing in health care: A systematic review of the literature. Health Policy. 2017; 121(7):755-763.
DOI: 10.1016/j.healthpol.2017.04.013.
View
15.
Fuller S, Hu J, Liu J, Gibson E, Gregory M, Kuo J
. Five-Year Cost-Effectiveness Modeling of Primary Care-Based, Nonmydriatic Automated Retinal Image Analysis Screening Among Low-Income Patients With Diabetes. J Diabetes Sci Technol. 2020; 16(2):415-427.
PMC: 8861785.
DOI: 10.1177/1932296820967011.
View
16.
Wang S, Andrews C, Gardner T, Wood M, Singer K, Stein J
. Ophthalmic Screening Patterns Among Youths With Diabetes Enrolled in a Large US Managed Care Network. JAMA Ophthalmol. 2017; 135(5):432-438.
PMC: 5567866.
DOI: 10.1001/jamaophthalmol.2017.0089.
View
17.
Marks B, Mungmode A, Neyman A, Levin L, Rioles N, Eng D
. Baseline Quality Improvement Capacity of 33 Endocrinology Centers Participating in the T1D Exchange Quality Improvement Collaborative. Clin Diabetes. 2023; 41(1):35-44.
PMC: 9845085.
DOI: 10.2337/cd22-0071.
View
18.
Channa R, Wolf R, Abramoff M, Lehmann H
. Effectiveness of artificial intelligence screening in preventing vision loss from diabetes: a policy model. NPJ Digit Med. 2023; 6(1):53.
PMC: 10042864.
DOI: 10.1038/s41746-023-00785-z.
View
19.
Liu H, Li R, Zhang Y, Zhang K, Yusufu M, Liu Y
. Economic evaluation of combined population-based screening for multiple blindness-causing eye diseases in China: a cost-effectiveness analysis. Lancet Glob Health. 2023; 11(3):e456-e465.
DOI: 10.1016/S2214-109X(22)00554-X.
View
20.
Huang X, Yang B, Zheng W, Liu Q, Xiao F, Ouyang P
. Cost-effectiveness of artificial intelligence screening for diabetic retinopathy in rural China. BMC Health Serv Res. 2022; 22(1):260.
PMC: 8881835.
DOI: 10.1186/s12913-022-07655-6.
View