Response of a Tenomodulin-positive Subpopulation of Human Adipose-derived Stem Cells to Decellularized Tendon Slices
Overview
Authors
Affiliations
The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes. In this study, we isolated and identified a tenomodulin (TNMD)-positive subpopulation from hADSCs (TNMDhADSCs) using flow cytometry and then assessed the cellular response of this subpopulation to decellularized tendon slices (DTSs), including cell proliferation, migration, and tenogenic differentiation, using the CCK-8 assay, transwell migration assay, and quantitative real-time polymerase chain reaction. Our findings revealed that TNMDhADSCs maintained the general characteristics of stem cells and exhibited significantly higher expressions of tendon-related markers compared to hADSCs. Importantly, DTSs significantly enhanced the proliferation, migration, and tenogenic differentiation of TNMDhADSCs. This study provides preliminary experimental evidence for the translational application of ADSCs for tendon regeneration and repair.