6.
Fang X, Li S, Yu H, Wang P, Zhang Y, Chen Z
. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging (Albany NY). 2020; 12(13):12493-12503.
PMC: 7377860.
DOI: 10.18632/aging.103579.
View
7.
Kamel F, Magadmi R, Qutub S, Badawi M, Badawi M, Madani T
. Machine Learning-Based Prediction of COVID-19 Prognosis Using Clinical and Hematologic Data. Cureus. 2023; 15(12):e50212.
PMC: 10710934.
DOI: 10.7759/cureus.50212.
View
8.
Trevethan R
. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front Public Health. 2017; 5:307.
PMC: 5701930.
DOI: 10.3389/fpubh.2017.00307.
View
9.
Kanji S, Burry L, Williamson D, Pittman M, Dubinsky S, Patel D
. Therapeutic alternatives and strategies for drug conservation in the intensive care unit during times of drug shortage: a report of the Ontario COVID-19 ICU Drug Task Force. Can J Anaesth. 2020; 67(10):1405-1416.
PMC: 8297429.
DOI: 10.1007/s12630-020-01713-5.
View
10.
Kim D
. Prediction Models for COVID-19 Mortality Using Artificial Intelligence. J Pers Med. 2022; 12(9).
PMC: 9501963.
DOI: 10.3390/jpm12091522.
View
11.
Herman C
. What makes a screening exam "good"?. Virtual Mentor. 2012; 8(1):34-7.
DOI: 10.1001/virtualmentor.2006.8.1.cprl1-0601.
View
12.
Luo X, Lv M, Zhang X, Estill J, Yang B, Lei R
. Clinical manifestations of COVID-19: An overview of 102 systematic reviews with evidence mapping. J Evid Based Med. 2022; 15(3):201-215.
PMC: 9353366.
DOI: 10.1111/jebm.12483.
View
13.
Mohamed K, Rzymski P, Islam M, Makuku R, Mushtaq A, Khan A
. COVID-19 vaccinations: The unknowns, challenges, and hopes. J Med Virol. 2021; 94(4):1336-1349.
PMC: 9015467.
DOI: 10.1002/jmv.27487.
View
14.
Rodvold D, McLeod D, Brandt J, Snow P, Murphy G
. Introduction to artificial neural networks for physicians: taking the lid off the black box. Prostate. 2001; 46(1):39-44.
DOI: 10.1002/1097-0045(200101)46:1<39::aid-pros1006>3.0.co;2-m.
View
15.
Jimenez-Solem E, Petersen T, Hansen C, Hansen C, Lioma C, Igel C
. Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients. Sci Rep. 2021; 11(1):3246.
PMC: 7864944.
DOI: 10.1038/s41598-021-81844-x.
View
16.
Ramirez-Del Real T, Martinez-Garcia M, Marquez M, Lopez-Trejo L, Gutierrez-Esparza G, Hernandez-Lemus E
. Individual Factors Associated With COVID-19 Infection: A Machine Learning Study. Front Public Health. 2022; 10:912099.
PMC: 9279686.
DOI: 10.3389/fpubh.2022.912099.
View
17.
Tenda E, Henrina J, Setiadharma A, Aristy D, Zaky Romadhon P, Thahadian H
. Derivation and validation of novel integrated inpatient mortality prediction score for COVID-19 (IMPACT) using clinical, laboratory, and AI-processed radiological parameter upon admission: a multicentre study. Sci Rep. 2024; 14(1):2149.
PMC: 10810804.
DOI: 10.1038/s41598-023-50564-9.
View
18.
Sandhu P, Shah A, Ahmad F, Kerr J, Demeke H, Graeden E
. Emergency Department and Intensive Care Unit Overcrowding and Ventilator Shortages in US Hospitals During the COVID-19 Pandemic, 2020-2021. Public Health Rep. 2022; 137(4):796-802.
PMC: 9257510.
DOI: 10.1177/00333549221091781.
View
19.
Hang Kwok S, Wang G, Sohel F, Kashani K, Zhu Y, Wang Z
. An artificial intelligence approach for predicting death or organ failure after hospitalization for COVID-19: development of a novel risk prediction tool and comparisons with ISARIC-4C, CURB-65, qSOFA, and MEWS scoring systems. Respir Res. 2023; 24(1):79.
PMC: 10010216.
DOI: 10.1186/s12931-023-02386-6.
View
20.
Arpaci I, Huang S, Al-Emran M, Al-Kabi M, Peng M
. Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms. Multimed Tools Appl. 2021; 80(8):11943-11957.
PMC: 7790521.
DOI: 10.1007/s11042-020-10340-7.
View