6.
Crunfli F, Carregari V, Veras F, Silva L, Nogueira M, Antunes A
. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A. 2022; 119(35):e2200960119.
PMC: 9436354.
DOI: 10.1073/pnas.2200960119.
View
7.
Datta G, Miller N, Halcrow P, Khan N, Colwell T, Geiger J
. SARS-CoV-2 S1 Protein Induces Endolysosome Dysfunction and Neuritic Dystrophy. Front Cell Neurosci. 2021; 15:777738.
PMC: 8579006.
DOI: 10.3389/fncel.2021.777738.
View
8.
Sunada N, Honda H, Nakano Y, Yamamoto K, Tokumasu K, Sakurada Y
. Hormonal trends in patients suffering from long COVID symptoms. Endocr J. 2022; 69(10):1173-1181.
DOI: 10.1507/endocrj.EJ22-0093.
View
9.
Sauve F, Nampoothiri S, Clarke S, Fernandois D, Ferreira Coelho C, Dewisme J
. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine. 2023; 96:104784.
PMC: 10507138.
DOI: 10.1016/j.ebiom.2023.104784.
View
10.
Schultheiss C, Willscher E, Paschold L, Gottschick C, Klee B, Bosurgi L
. Liquid biomarkers of macrophage dysregulation and circulating spike protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19. J Med Virol. 2022; 95(1):e28364.
PMC: 9878213.
DOI: 10.1002/jmv.28364.
View
11.
Taquet M, Geddes J, Husain M, Luciano S, Harrison P
. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021; 8(5):416-427.
PMC: 8023694.
DOI: 10.1016/S2215-0366(21)00084-5.
View
12.
Cantuti-Castelvetri L, Ojha R, Pedro L, Djannatian M, Franz J, Kuivanen S
. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370(6518):856-860.
PMC: 7857391.
DOI: 10.1126/science.abd2985.
View
13.
Reynolds J, Mahajan S
. SARS-COV2 Alters Blood Brain Barrier Integrity Contributing to Neuro-Inflammation. J Neuroimmune Pharmacol. 2021; 16(1):4-6.
PMC: 7786155.
DOI: 10.1007/s11481-020-09975-y.
View
14.
Cao X, Nguyen V, Tsai J, Gao C, Tian Y, Zhang Y
. The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice. Mol Metab. 2023; 74:101756.
PMC: 10281040.
DOI: 10.1016/j.molmet.2023.101756.
View
15.
Chen R, Wang K, Yu J, Howard D, French L, Chen Z
. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol. 2021; 11:573095.
PMC: 7855591.
DOI: 10.3389/fneur.2020.573095.
View
16.
Sudre C, Murray B, Varsavsky T, Graham M, Penfold R, Bowyer R
. Attributes and predictors of long COVID. Nat Med. 2021; 27(4):626-631.
PMC: 7611399.
DOI: 10.1038/s41591-021-01292-y.
View
17.
Andrews M, Mukhtar T, Eze U, Simoneau C, Ross J, Parikshak N
. Tropism of SARS-CoV-2 for human cortical astrocytes. Proc Natl Acad Sci U S A. 2022; 119(30):e2122236119.
PMC: 9335272.
DOI: 10.1073/pnas.2122236119.
View
18.
Rong Z, Mai H, Ebert G, Kapoor S, Puelles V, Czogalla J
. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe. 2024; 32(12):2112-2130.e10.
DOI: 10.1016/j.chom.2024.11.007.
View
19.
Parekh R, Sriramula S
. Activation of Kinin B1R Upregulates ADAM17 and Results in ACE2 Shedding in Neurons. Int J Mol Sci. 2020; 22(1).
PMC: 7795389.
DOI: 10.3390/ijms22010145.
View
20.
Pretorius E, Vlok M, Venter C, Bezuidenhout J, Laubscher G, Steenkamp J
. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol. 2021; 20(1):172.
PMC: 8381139.
DOI: 10.1186/s12933-021-01359-7.
View