6.
Finkel R, Chiriboga C, Vajsar J, Day J, Montes J, De Vivo D
. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016; 388(10063):3017-3026.
DOI: 10.1016/S0140-6736(16)31408-8.
View
7.
Miller T, Cudkowicz M, Genge A, Shaw P, Sobue G, Bucelli R
. Trial of Antisense Oligonucleotide Tofersen for ALS. N Engl J Med. 2022; 387(12):1099-1110.
DOI: 10.1056/NEJMoa2204705.
View
8.
Chaytow H, Faller K, Huang Y, Gillingwater T
. Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med. 2021; 2(7):100346.
PMC: 8324491.
DOI: 10.1016/j.xcrm.2021.100346.
View
9.
Day J, Howell K, Place A, Long K, Rossello J, Kertesz N
. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr. 2022; 22(1):632.
PMC: 9632131.
DOI: 10.1186/s12887-022-03671-x.
View
10.
Hardiman O, Al-Chalabi A, Chio A, Corr E, Logroscino G, Robberecht W
. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017; 3:17071.
DOI: 10.1038/nrdp.2017.71.
View
11.
Goutman S, Hardiman O, Al-Chalabi A, Chio A, Savelieff M, Kiernan M
. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 2022; 21(5):465-479.
PMC: 9513754.
DOI: 10.1016/S1474-4422(21)00414-2.
View
12.
Van Nostrand E, Freese P, Pratt G, Wang X, Wei X, Xiao R
. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020; 583(7818):711-719.
PMC: 7410833.
DOI: 10.1038/s41586-020-2077-3.
View
13.
Fernandopulle M, Lippincott-Schwartz J, Ward M
. RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci. 2021; 24(5):622-632.
PMC: 8860725.
DOI: 10.1038/s41593-020-00785-2.
View
14.
Nikom D, Zheng S
. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci. 2023; 24(8):457-473.
DOI: 10.1038/s41583-023-00717-6.
View
15.
Butti Z, Patten S
. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet. 2019; 9:712.
PMC: 6349704.
DOI: 10.3389/fgene.2018.00712.
View
16.
DeJesus-Hernandez M, Mackenzie I, Boeve B, Boxer A, Baker M, Rutherford N
. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011; 72(2):245-56.
PMC: 3202986.
DOI: 10.1016/j.neuron.2011.09.011.
View
17.
Kumar V, Hasan G, Hassan M
. Unraveling the Role of RNA Mediated Toxicity of Repeats in C9-FTD/ALS. Front Neurosci. 2018; 11:711.
PMC: 5736982.
DOI: 10.3389/fnins.2017.00711.
View
18.
Ling S, Polymenidou M, Cleveland D
. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013; 79(3):416-38.
PMC: 4411085.
DOI: 10.1016/j.neuron.2013.07.033.
View
19.
Freibaum B, Chitta R, High A, Taylor J
. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res. 2009; 9(2):1104-20.
PMC: 2897173.
DOI: 10.1021/pr901076y.
View
20.
Polymenidou M, Lagier-Tourenne C, Hutt K, Huelga S, Moran J, Liang T
. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011; 14(4):459-68.
PMC: 3094729.
DOI: 10.1038/nn.2779.
View