6.
Gauthier O, Bouler J, Aguado E, LeGeros R, Pilet P, Daculsi G
. Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics. J Mater Sci Mater Med. 2004; 10(4):199-204.
DOI: 10.1023/a:1008949910440.
View
7.
Diaz-Rodriguez P, Sanchez M, Landin M
. Drug-Loaded Biomimetic Ceramics for Tissue Engineering. Pharmaceutics. 2018; 10(4).
PMC: 6321415.
DOI: 10.3390/pharmaceutics10040272.
View
8.
Lu J, Wei J, Yan Y, Li H, Jia J, Wei S
. Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med. 2011; 22(3):607-15.
DOI: 10.1007/s10856-011-4228-4.
View
9.
Morejon L, Delgado J, Ribeiro A, Oliveira M, Mendizabal E, Garcia I
. Development, Characterization and In Vitro Biological Properties of Scaffolds Fabricated From Calcium Phosphate Nanoparticles. Int J Mol Sci. 2019; 20(7).
PMC: 6480082.
DOI: 10.3390/ijms20071790.
View
10.
Kyle S, Jessop Z, Al-Sabah A, Whitaker I
. 'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art. Adv Healthc Mater. 2017; 6(16).
DOI: 10.1002/adhm.201700264.
View
11.
Possl A, Hartzke D, Schmidts T, Runkel F, Schlupp P
. A targeted rheological bioink development guideline and its systematic correlation with printing behavior. Biofabrication. 2021; 13(3).
DOI: 10.1088/1758-5090/abde1e.
View
12.
Liu Q, Lu W, Zhai W
. Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: A mini-review and meta-analysis. Biomater Adv. 2022; 134:112578.
DOI: 10.1016/j.msec.2021.112578.
View
13.
Dutta S, Passi D, Singh P, Bhuibhar A
. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci. 2014; 184(1):101-6.
DOI: 10.1007/s11845-014-1199-8.
View
14.
Saadi M, Maguire A, Pottackal N, Thakur M, Ikram M, Hart A
. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv Mater. 2022; 34(28):e2108855.
DOI: 10.1002/adma.202108855.
View
15.
Theus A, Ning L, Hwang B, Gil C, Chen S, Wombwell A
. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers (Basel). 2020; 12(10).
PMC: 7599870.
DOI: 10.3390/polym12102262.
View
16.
Ratheesh G, Shi M, Lau P, Xiao Y, Vaquette C
. Effect of Dual Pore Size Architecture on In Vitro Osteogenic Differentiation in Additively Manufactured Hierarchical Scaffolds. ACS Biomater Sci Eng. 2021; 7(6):2615-2626.
DOI: 10.1021/acsbiomaterials.0c01719.
View
17.
Lamnini S, Elsayed H, Lakhdar Y, Baino F, Smeacetto F, Bernardo E
. Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters - A review. Heliyon. 2022; 8(9):e10651.
PMC: 9508426.
DOI: 10.1016/j.heliyon.2022.e10651.
View
18.
Paxton N, Smolan W, Bock T, Melchels F, Groll J, Jungst T
. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017; 9(4):044107.
DOI: 10.1088/1758-5090/aa8dd8.
View
19.
Jiang S, Wang M, He J
. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med. 2021; 6(2):e10206.
PMC: 8126827.
DOI: 10.1002/btm2.10206.
View
20.
Huang J, Ten E, Liu G, Finzen M, Yu W, Lee J
. Biocomposites of pHEMA with HA/β -TCP (60/40) for bone tissue engineering: Swelling, hydrolytic degradation, and behavior. Polymer (Guildf). 2013; 54(3):1197-1207.
PMC: 3601843.
DOI: 10.1016/j.polymer.2012.12.045.
View