6.
Colombo N, Sessa C, Bois A, Ledermann J, McCluggage W, McNeish I
. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol. 2019; 30(5):672-705.
DOI: 10.1093/annonc/mdz062.
View
7.
Wu C, Pan K, Chen J, Tao Y, Liu Y, Chen B
. Loss of LECT2 promotes ovarian cancer progression by inducing cancer invasiveness and facilitating an immunosuppressive environment. Oncogene. 2024; 43(7):511-523.
PMC: 10857938.
DOI: 10.1038/s41388-023-02918-w.
View
8.
Ishikawa A, Wada T, Nishimura S, Ito T, Okekawa A, Onogi Y
. Estrogen regulates sex-specific localization of regulatory T cells in adipose tissue of obese female mice. PLoS One. 2020; 15(4):e0230885.
PMC: 7117686.
DOI: 10.1371/journal.pone.0230885.
View
9.
Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Morisaki T
. Prediction of treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer by analysis of immune checkpoint protein expression. J Transl Med. 2018; 16(1):87.
PMC: 5883348.
DOI: 10.1186/s12967-018-1458-y.
View
10.
Jeon S, Hwang K, Choi K
. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016; 158:1-8.
DOI: 10.1016/j.jsbmb.2016.02.005.
View
11.
Scott S, Shao X, Niknafs N, Balan A, Pereira G, Marrone K
. Sex-specific differences in immunogenomic features of response to immune checkpoint blockade. Front Oncol. 2022; 12:945798.
PMC: 9382103.
DOI: 10.3389/fonc.2022.945798.
View
12.
Kim S, Kim J
. Role of surgery and hyperthermic intraperitoneal chemotherapy in ovarian cancer. ESMO Open. 2021; 6(3):100149.
PMC: 8314869.
DOI: 10.1016/j.esmoop.2021.100149.
View
13.
Mukherjee K, Syed V, Ho S
. Estrogen-induced loss of progesterone receptor expression in normal and malignant ovarian surface epithelial cells. Oncogene. 2005; 24(27):4388-400.
DOI: 10.1038/sj.onc.1208623.
View
14.
Bagbudar S, Karanlik H, Cabioglu N, Bayram A, Ibis K, Aydin E
. Prognostic Implications of Immune Infiltrates in the Breast Cancer Microenvironment: The Role of Expressions of CTLA-4, PD-1, and LAG-3. Appl Immunohistochem Mol Morphol. 2021; 30(2):99-107.
DOI: 10.1097/PAI.0000000000000978.
View
15.
Chovatiya N, Kaur K, Huerta-Yepez S, Chen P, Neal A, DiBernardo G
. Inability of ovarian cancers to upregulate their MHC-class I surface expression marks their aggressiveness and increased susceptibility to NK cell-mediated cytotoxicity. Cancer Immunol Immunother. 2022; 71(12):2929-2941.
PMC: 10991924.
DOI: 10.1007/s00262-022-03192-7.
View
16.
Potter S, Dwyer R, Curran C, Hennessy E, Harrington K, Griffin D
. Systemic chemokine levels in breast cancer patients and their relationship with circulating menstrual hormones. Breast Cancer Res Treat. 2008; 115(2):279-87.
DOI: 10.1007/s10549-008-0078-2.
View
17.
Mauro L, Seibel M, Diep C, Spartz A, Perez Kerkvliet C, Singhal H
. Progesterone Receptors Promote Quiescence and Ovarian Cancer Cell Phenotypes via DREAM in p53-Mutant Fallopian Tube Models. J Clin Endocrinol Metab. 2021; 106(7):1929-1955.
PMC: 8499172.
DOI: 10.1210/clinem/dgab195.
View
18.
He M, Yu W, Chang C, Miyamoto H, Liu X, Jiang K
. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Mol Oncol. 2020; 14(8):1779-1799.
PMC: 7400793.
DOI: 10.1002/1878-0261.12701.
View
19.
Jayson G, Kohn E, Kitchener H, Ledermann J
. Ovarian cancer. Lancet. 2014; 384(9951):1376-88.
DOI: 10.1016/S0140-6736(13)62146-7.
View
20.
Offner H, Vandenbark A
. Congruent effects of estrogen and T-cell receptor peptide therapy on regulatory T cells in EAE and MS. Int Rev Immunol. 2005; 24(5-6):447-77.
DOI: 10.1080/08830180500371462.
View