6.
Chen D, Li J, Mei X, Liu X, Zuo P, Qiu X
. Adjustable Plane Curvature of Covalent Organic Framework Enabling Outstanding Dielectric, Electret, and High-Temperature Processing Properties. Angew Chem Int Ed Engl. 2023; 62(51):e202315143.
DOI: 10.1002/anie.202315143.
View
7.
Shao P, Li J, Chen F, Ma L, Li Q, Zhang M
. Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angew Chem Int Ed Engl. 2018; 57(50):16501-16505.
DOI: 10.1002/anie.201811250.
View
8.
Hong S, Lee C, Lee M, Lee Y, Ma K, Kim G
. Ultralow-dielectric-constant amorphous boron nitride. Nature. 2020; 582(7813):511-514.
DOI: 10.1038/s41586-020-2375-9.
View
9.
Liu C, Mullins M, Hawkins S, Kotaki M, Sue H
. Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8. ACS Appl Mater Interfaces. 2017; 10(1):1250-1257.
DOI: 10.1021/acsami.7b16711.
View
10.
Evans A, Giri A, Sangwan V, Xun S, Bartnof M, Torres-Castanedo C
. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat Mater. 2021; 20(8):1142-1148.
DOI: 10.1038/s41563-021-00934-3.
View
11.
Zhao Z, Wang R, Peng C, Chen W, Wu T, Hu B
. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun. 2021; 12(1):6606.
PMC: 8595410.
DOI: 10.1038/s41467-021-26947-9.
View
12.
Williams J, Nguyen B, McCorkle L, Scheiman D, Griffin J, Steiner 3rd S
. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity. ACS Appl Mater Interfaces. 2017; 9(2):1801-1809.
DOI: 10.1021/acsami.6b13100.
View
13.
Deshmukh A, Wu C, Yassin O, Chen L, Shukla S, Zhou J
. Effect of Fluorine in Redesigning Energy-Storage Properties of High-Temperature Dielectric Polymers. ACS Appl Mater Interfaces. 2023; 15(40):46840-46848.
DOI: 10.1021/acsami.3c08858.
View
14.
Jin F, Wang T, Zheng H, Lin E, Zheng Y, Hao L
. Bottom-Up Synthesis of Covalent Organic Frameworks with Quasi-Three-Dimensional Integrated Architecture via Interlayer Cross-Linking. J Am Chem Soc. 2023; 145(11):6507-6515.
DOI: 10.1021/jacs.3c00550.
View
15.
Yang Y, Liang B, Kreie J, Hambsch M, Liang Z, Wang C
. Elastic films of single-crystal two-dimensional covalent organic frameworks. Nature. 2024; 630(8018):878-883.
DOI: 10.1038/s41586-024-07505-x.
View
16.
Wang R, Zhu Y, Fu J, Yang M, Ran Z, Li J
. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat Commun. 2023; 14(1):2406.
PMC: 10133333.
DOI: 10.1038/s41467-023-38145-w.
View
17.
Senarathna M, Li H, Perera S, Torres-Correas J, Diwakara S, Boardman S
. Highly Flexible Dielectric Films from Solution Processable Covalent Organic Frameworks. Angew Chem Int Ed Engl. 2023; 62(49):e202312617.
DOI: 10.1002/anie.202312617.
View
18.
Zhang W, Chen L, Dai S, Zhao C, Ma C, Wei L
. Reconstructed covalent organic frameworks. Nature. 2022; 604(7904):72-79.
PMC: 8986529.
DOI: 10.1038/s41586-022-04443-4.
View
19.
Wang Z, Yu Q, Huang Y, An H, Zhao Y, Feng Y
. PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance. ACS Cent Sci. 2019; 5(8):1352-1359.
PMC: 6716131.
DOI: 10.1021/acscentsci.9b00212.
View
20.
Chen J, Pei Z, Chai B, Jiang P, Ma L, Zhu L
. Engineering the Dielectric Constants of Polymers: From Molecular to Mesoscopic Scales. Adv Mater. 2023; 36(52):e2308670.
DOI: 10.1002/adma.202308670.
View