6.
Saini P, Sheikh I, Saini D, Mir R, Dhaliwal H, Tyagi V
. Consensus genomic regions associated with grain protein content in hexaploid and tetraploid wheat. Front Genet. 2022; 13:1021180.
PMC: 9554612.
DOI: 10.3389/fgene.2022.1021180.
View
7.
Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A
. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype-phenotype association analyses. Planta. 2020; 252(4):65.
DOI: 10.1007/s00425-020-03466-3.
View
8.
Cabral A, Jordan M, Larson G, Somers D, Humphreys D, McCartney C
. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'. PLoS One. 2018; 13(1):e0190681.
PMC: 5777647.
DOI: 10.1371/journal.pone.0190681.
View
9.
Khahani B, Tavakol E, Shariati V, Fornara F
. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics. 2020; 21(1):294.
PMC: 7146888.
DOI: 10.1186/s12864-020-6702-1.
View
10.
Ma J, Liu Y, Zhang P, Chen T, Tian T, Wang P
. Identification of quantitative trait loci (QTL) and meta-QTL analysis for kernel size-related traits in wheat (Triticum aestivum L.). BMC Plant Biol. 2022; 22(1):607.
PMC: 9784057.
DOI: 10.1186/s12870-022-03989-9.
View
11.
Li X, Shi S, Tao Q, Tao Y, Miao J, Peng X
. OsGASR9 positively regulates grain size and yield in rice (Oryza sativa). Plant Sci. 2019; 286:17-27.
DOI: 10.1016/j.plantsci.2019.03.008.
View
12.
Saini D, Srivastava P, Pal N, Gupta P
. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theor Appl Genet. 2022; 135(3):1049-1081.
DOI: 10.1007/s00122-021-04018-3.
View
13.
Qu X, Liu J, Xie X, Xu Q, Tang H, Mu Y
. Genetic Mapping and Validation of Loci for Kernel-Related Traits in Wheat ( L.). Front Plant Sci. 2021; 12:667493.
PMC: 8215603.
DOI: 10.3389/fpls.2021.667493.
View
14.
Somers D, Isaac P, Edwards K
. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004; 109(6):1105-14.
DOI: 10.1007/s00122-004-1740-7.
View
15.
Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y
. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics. 2010; 11(1):49-61.
DOI: 10.1007/s10142-010-0188-x.
View
16.
Simmonds J, Scott P, Brinton J, Mestre T, Bush M, Del Blanco A
. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet. 2016; 129(6):1099-112.
PMC: 4869752.
DOI: 10.1007/s00122-016-2686-2.
View
17.
Mirzaghaderi G, Mason A
. Broadening the bread wheat D genome. Theor Appl Genet. 2019; 132(5):1295-1307.
DOI: 10.1007/s00122-019-03299-z.
View
18.
Raza Q, Riaz A, Sabar M, Atif R, Bashir K
. Meta-analysis of grain iron and zinc associated QTLs identified hotspot chromosomal regions and positional candidate genes for breeding biofortified rice. Plant Sci. 2019; 288:110214.
DOI: 10.1016/j.plantsci.2019.110214.
View
19.
Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, Zhang Y
. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet. 2019; 132(6):1799-1814.
DOI: 10.1007/s00122-019-03316-1.
View
20.
Peleg Z, Fahima T, Korol A, Abbo S, Saranga Y
. Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot. 2011; 62(14):5051-61.
PMC: 3193012.
DOI: 10.1093/jxb/err206.
View