6.
Craddock R, James G, Holtzheimer 3rd P, Hu X, Mayberg H
. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp. 2011; 33(8):1914-28.
PMC: 3838923.
DOI: 10.1002/hbm.21333.
View
7.
Kong R, Li J, Orban C, Sabuncu M, Liu H, Schaefer A
. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cereb Cortex. 2018; 29(6):2533-2551.
PMC: 6519695.
DOI: 10.1093/cercor/bhy123.
View
8.
Moreno-Dominguez D, Anwander A, Knosche T
. A hierarchical method for whole-brain connectivity-based parcellation. Hum Brain Mapp. 2014; 35(10):5000-25.
PMC: 6869099.
DOI: 10.1002/hbm.22528.
View
9.
Salehi M, Karbasi A, Shen X, Scheinost D, Constable R
. An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. Neuroimage. 2017; 170:54-67.
PMC: 5905726.
DOI: 10.1016/j.neuroimage.2017.08.068.
View
10.
Reveley C, Seth A, Pierpaoli C, Silva A, Yu D, Saunders R
. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci U S A. 2015; 112(21):E2820-8.
PMC: 4450402.
DOI: 10.1073/pnas.1418198112.
View
11.
Gutman B, Leonardo C, Jahanshad N, Hibar D, Eschenburg K, Nir T
. Registering cortical surfaces based on whole-brain structural connectivity and continuous connectivity analysis. Med Image Comput Comput Assist Interv. 2014; 17(Pt 3):161-8.
PMC: 4283762.
DOI: 10.1007/978-3-319-10443-0_21.
View
12.
Betzel R, Bassett D
. Multi-scale brain networks. Neuroimage. 2016; 160:73-83.
PMC: 5695236.
DOI: 10.1016/j.neuroimage.2016.11.006.
View
13.
Destrieux C, Fischl B, Dale A, Halgren E
. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010; 53(1):1-15.
PMC: 2937159.
DOI: 10.1016/j.neuroimage.2010.06.010.
View
14.
Cohen A, Fair D, Dosenbach N, Miezin F, Dierker D, Van Essen D
. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage. 2008; 41(1):45-57.
PMC: 2705206.
DOI: 10.1016/j.neuroimage.2008.01.066.
View
15.
Wang R, Lin P, Liu M, Wu Y, Zhou T, Zhou C
. Hierarchical Connectome Modes and Critical State Jointly Maximize Human Brain Functional Diversity. Phys Rev Lett. 2019; 123(3):038301.
DOI: 10.1103/PhysRevLett.123.038301.
View
16.
Mansour L S, Tian Y, Yeo B, Cropley V, Zalesky A
. High-resolution connectomic fingerprints: Mapping neural identity and behavior. Neuroimage. 2021; 229:117695.
DOI: 10.1016/j.neuroimage.2020.117695.
View
17.
Baldassano C, Beck D, Fei-Fei L
. Parcellating connectivity in spatial maps. PeerJ. 2015; 3:e784.
PMC: 4338796.
DOI: 10.7717/peerj.784.
View
18.
Zhang Z, Descoteaux M, Zhang J, Girard G, Chamberland M, Dunson D
. Mapping population-based structural connectomes. Neuroimage. 2018; 172:130-145.
PMC: 5910206.
DOI: 10.1016/j.neuroimage.2017.12.064.
View
19.
Kahnt T, Chang L, Park S, Heinzle J, Haynes J
. Connectivity-based parcellation of the human orbitofrontal cortex. J Neurosci. 2012; 32(18):6240-50.
PMC: 6622144.
DOI: 10.1523/JNEUROSCI.0257-12.2012.
View
20.
Scott S, Blank C, Rosen S, Wise R
. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 2000; 123 Pt 12:2400-6.
PMC: 5630088.
DOI: 10.1093/brain/123.12.2400.
View