6.
Stewart P, Turner A, Miller S
. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand J Med Sci Sports. 2012; 24(3):500-6.
DOI: 10.1111/sms.12019.
View
7.
Miranda-Oliveira P, Branco M, Fernandes O
. Accuracy and Interpretation of the Acceleration from an Inertial Measurement Unit When Applied to the Sprint Performance of Track and Field Athletes. Sensors (Basel). 2023; 23(4).
PMC: 9968079.
DOI: 10.3390/s23041761.
View
8.
de Ruiter C, Wilmes E, Brouwers S, Jagers E, van Dieen J
. Concurrent validity of an easy-to-use inertial measurement unit-system to evaluate sagittal plane segment kinematics during overground sprinting at different speeds. Sports Biomech. 2022; 23(12):2757-2770.
DOI: 10.1080/14763141.2022.2056076.
View
9.
Makar P, Silva A, Oliveira R, Janusiak M, Parus P, Smoter M
. Assessing the agreement between a global navigation satellite system and an optical-tracking system for measuring total, high-speed running, and sprint distances in official soccer matches. Sci Prog. 2023; 106(3):368504231187501.
PMC: 10358465.
DOI: 10.1177/00368504231187501.
View
10.
Freeman B, Talpey S, James L, Opar D, Young W
. Common High-Speed Running Thresholds Likely Do Not Correspond to High-Speed Running in Field Sports. J Strength Cond Res. 2023; 37(7):1411-1418.
DOI: 10.1519/JSC.0000000000004421.
View
11.
Garcia-Pinillos F, Latorre-Roman P, Soto-Hermoso V, Parraga-Montilla J, Pantoja-Vallejo A, Ramirez-Campillo R
. Agreement between the spatiotemporal gait parameters from two different wearable devices and high-speed video analysis. PLoS One. 2019; 14(9):e0222872.
PMC: 6759187.
DOI: 10.1371/journal.pone.0222872.
View
12.
Linke D, Link D, Lames M
. Football-specific validity of TRACAB's optical video tracking systems. PLoS One. 2020; 15(3):e0230179.
PMC: 7064167.
DOI: 10.1371/journal.pone.0230179.
View
13.
Bezodis N, Salo A, Trewartha G
. Measurement error in estimates of sprint velocity from a laser displacement measurement device. Int J Sports Med. 2012; 33(6):439-44.
DOI: 10.1055/s-0031-1301313.
View
14.
Felipe J, Garcia-Unanue J, Viejo-Romero D, Navandar A, Sanchez-Sanchez J
. Validation of a Video-Based Performance Analysis System (Mediacoach) to Analyze the Physical Demands during Matches in LaLiga. Sensors (Basel). 2019; 19(19).
PMC: 6806213.
DOI: 10.3390/s19194113.
View
15.
Mackala K, Fostiak M, Kowalski K
. Selected determinants of acceleration in the 100m sprint. J Hum Kinet. 2015; 45:135-48.
PMC: 4415826.
DOI: 10.1515/hukin-2015-0014.
View
16.
Pons E, Garcia-Calvo T, Resta R, Blanco H, Lopez Del Campo R, Garcia J
. A comparison of a GPS device and a multi-camera video technology during official soccer matches: Agreement between systems. PLoS One. 2019; 14(8):e0220729.
PMC: 6687125.
DOI: 10.1371/journal.pone.0220729.
View
17.
Feletti F, Bracco C, Maria Molisso T, Bova L, Aliverti A
. Analysis of Fluency of Movement in Parkour Using a Video and Inertial Measurement Unit Technology. J Hum Kinet. 2023; 89:5-18.
PMC: 10694727.
DOI: 10.5114/jhk/166581.
View
18.
Mattes K, Wolff S, Alizadeh S
. Kinematic Stride Characteristics of Maximal Sprint Running of Elite Sprinters - Verification of the "Swing-Pull Technique". J Hum Kinet. 2021; 77:15-24.
PMC: 8008308.
DOI: 10.2478/hukin-2021-0008.
View
19.
Mero A, Komi P, Gregor R
. Biomechanics of sprint running. A review. Sports Med. 1992; 13(6):376-92.
DOI: 10.2165/00007256-199213060-00002.
View
20.
Chelly M, Fathloun M, Cherif N, Ben Amar M, Tabka Z, Van Praagh E
. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J Strength Cond Res. 2009; 23(8):2241-9.
DOI: 10.1519/JSC.0b013e3181b86c40.
View