6.
Jia H, Flommersfeld J, Heymann M, Vogel S, Franquelim H, Bruckner D
. 3D printed protein-based robotic structures actuated by molecular motor assemblies. Nat Mater. 2022; 21(6):703-709.
PMC: 9156402.
DOI: 10.1038/s41563-022-01258-6.
View
7.
Murrell M, Gardel M
. Actomyosin sliding is attenuated in contractile biomimetic cortices. Mol Biol Cell. 2014; 25(12):1845-53.
PMC: 4055264.
DOI: 10.1091/mbc.E13-08-0450.
View
8.
Field C, Wuhr M, Anderson G, Kueh H, Strickland D, Mitchison T
. Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos. J Cell Sci. 2011; 124(Pt 12):2086-95.
PMC: 3104037.
DOI: 10.1242/jcs.082263.
View
9.
Sakamoto R, Izri Z, Shimamoto Y, Miyazaki M, Maeda Y
. Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet. Proc Natl Acad Sci U S A. 2022; 119(30):e2121147119.
PMC: 9335187.
DOI: 10.1073/pnas.2121147119.
View
10.
Suzuki K, Miyazaki M, Takagi J, Itabashi T, Ishiwata S
. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow. Proc Natl Acad Sci U S A. 2017; 114(11):2922-2927.
PMC: 5358404.
DOI: 10.1073/pnas.1616001114.
View
11.
Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T
. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci U S A. 2010; 107(15):6894-9.
PMC: 2872430.
DOI: 10.1073/pnas.0911482107.
View
12.
Zakharov A, Awan M, Cheng T, Gopinath A, Lee S, Ramasubramanian A
. Clots reveal anomalous elastic behavior of fiber networks. Sci Adv. 2024; 10(2):eadh1265.
PMC: 10780871.
DOI: 10.1126/sciadv.adh1265.
View
13.
Ierushalmi N, Malik-Garbi M, Manhart A, Shah E, Goode B, Mogilner A
. Centering and symmetry breaking in confined contracting actomyosin networks. Elife. 2020; 9.
PMC: 7173961.
DOI: 10.7554/eLife.55368.
View
14.
Murrell M, Oakes P, Lenz M, Gardel M
. Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol. 2015; 16(8):486-98.
PMC: 7443980.
DOI: 10.1038/nrm4012.
View
15.
Schuppler M, Keber F, Kroger M, Bausch A
. Boundaries steer the contraction of active gels. Nat Commun. 2016; 7:13120.
PMC: 5067607.
DOI: 10.1038/ncomms13120.
View
16.
Miyazaki M, Chiba M, Eguchi H, Ohki T, Ishiwata S
. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat Cell Biol. 2015; 17(4):480-9.
DOI: 10.1038/ncb3142.
View
17.
Koenderink G, Paluch E
. Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol. 2018; 50:79-85.
DOI: 10.1016/j.ceb.2018.01.015.
View
18.
Sage D, Neumann F, Hediger F, Gasser S, Unser M
. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process. 2005; 14(9):1372-83.
DOI: 10.1109/tip.2005.852787.
View
19.
Henson J, Kolnik S, Fried C, Nazarian R, McGreevy J, Schulberg K
. Actin-based centripetal flow: phosphatase inhibition by calyculin-A alters flow pattern, actin organization, and actomyosin distribution. Cell Motil Cytoskeleton. 2003; 56(4):252-66.
DOI: 10.1002/cm.10149.
View
20.
Berret J
. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nat Commun. 2016; 7:10134.
PMC: 4728338.
DOI: 10.1038/ncomms10134.
View