6.
Johnson T, Maksem J, Belsheim B, Roose E, Klock L, Eatwell L
. Liquid-based cervical-cell collection with brushes and wooden spatulas: a comparison of 100 conventional smears from high-risk women to liquid-fixed cytocentrifuge slides, demonstrating a cost-effective, alternative monolayer slide preparation method. Diagn Cytopathol. 2000; 22(2):86-91.
DOI: 10.1002/(sici)1097-0339(200002)22:2<86::aid-dc5>3.0.co;2-4.
View
7.
Yang D, Soulos P, Davis B, Gross C, Yu J
. Impact of Widespread Cervical Cancer Screening: Number of Cancers Prevented and Changes in Race-specific Incidence. Am J Clin Oncol. 2016; 41(3):289-294.
PMC: 4958036.
DOI: 10.1097/COC.0000000000000264.
View
8.
Zhu X, Li X, Ong K, Zhang W, Li W, Li L
. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nat Commun. 2021; 12(1):3541.
PMC: 8192526.
DOI: 10.1038/s41467-021-23913-3.
View
9.
Bernstein S, Sanchez-Ramos L, Ndubisi B
. Liquid-based cervical cytologic smear study and conventional Papanicolaou smears: a metaanalysis of prospective studies comparing cytologic diagnosis and sample adequacy. Am J Obstet Gynecol. 2001; 185(2):308-17.
DOI: 10.1067/mob.2001.116736.
View
10.
William W, Ware A, Basaza-Ejiri A, Obungoloch J
. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images. Biomed Eng Online. 2019; 18(1):16.
PMC: 6373062.
DOI: 10.1186/s12938-019-0634-5.
View
11.
Hussain E, Mahanta L, Borah H, Ray Das C
. Liquid based-cytology Pap smear dataset for automated multi-class diagnosis of pre-cancerous and cervical cancer lesions. Data Brief. 2020; 30:105589.
PMC: 7186519.
DOI: 10.1016/j.dib.2020.105589.
View
12.
Park Y, Kim Y, Ju W, Nam K, Kim S, Kim K
. Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images. Sci Rep. 2021; 11(1):16143.
PMC: 8352876.
DOI: 10.1038/s41598-021-95748-3.
View
13.
T Rezende M, Silva R, Bernardo F, Tobias A, Oliveira P, Machado T
. Cric searchable image database as a public platform for conventional pap smear cytology data. Sci Data. 2021; 8(1):151.
PMC: 8192784.
DOI: 10.1038/s41597-021-00933-8.
View
14.
Wang C, Liou Y, Lin Y, Chang C, Chu P, Lee Y
. Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning. Sci Rep. 2021; 11(1):16244.
PMC: 8355253.
DOI: 10.1038/s41598-021-95545-y.
View
15.
Kamal M
. Pap Smear Collection and Preparation: Key Points. Cytojournal. 2022; 19:24.
PMC: 9063692.
DOI: 10.25259/CMAS_03_05_2021.
View
16.
Hussain E, Mahanta L, Ray Das C, Choudhury M, Chowdhury M
. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images. Artif Intell Med. 2020; 107:101897.
DOI: 10.1016/j.artmed.2020.101897.
View
17.
Piaton E, Prat J, Nennig C, Hutin K, Colombel M, Ruffion A
. ThinPrep® imaging system-assisted vs manual screening of urinary cytology slides in the detection of the "suspicious for high-grade urothelial carcinoma" category. Cytopathology. 2022; 33(6):716-724.
PMC: 9826506.
DOI: 10.1111/cyt.13173.
View
18.
Mat-Isa N, Mashor M, Othman N
. An automated cervical pre-cancerous diagnostic system. Artif Intell Med. 2007; 42(1):1-11.
DOI: 10.1016/j.artmed.2007.09.002.
View
19.
Linder J, Zahniser D
. The ThinPrep Pap test. A review of clinical studies. Acta Cytol. 1997; 41(1):30-8.
DOI: 10.1159/000332302.
View
20.
Singh D, Vignat J, Lorenzoni V, Eslahi M, Ginsburg O, Lauby-Secretan B
. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob Health. 2022; 11(2):e197-e206.
PMC: 9848409.
DOI: 10.1016/S2214-109X(22)00501-0.
View