6.
Butcher D, Alliston T, Weaver V
. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009; 9(2):108-22.
PMC: 2649117.
DOI: 10.1038/nrc2544.
View
7.
Huynh J, Nishimura N, Rana K, Peloquin J, Califano J, Montague C
. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med. 2011; 3(112):112ra122.
PMC: 3693751.
DOI: 10.1126/scitranslmed.3002761.
View
8.
Loessner D, Meinert C, Kaemmerer E, Martine L, Yue K, Levett P
. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc. 2016; 11(4):727-46.
DOI: 10.1038/nprot.2016.037.
View
9.
Bupphathong S, Quiroz C, Huang W, Chung P, Tao H, Lin C
. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications-A Review on Material Modifications. Pharmaceuticals (Basel). 2022; 15(2).
PMC: 8878046.
DOI: 10.3390/ph15020171.
View
10.
Sakr M, Sakthivel K, Hossain T, Shin S, Siddiqua S, Kim J
. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res A. 2021; 110(3):708-724.
DOI: 10.1002/jbm.a.37310.
View
11.
Im G, Lin R
. Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Front Bioeng Biotechnol. 2022; 10:1053491.
PMC: 9713639.
DOI: 10.3389/fbioe.2022.1053491.
View
12.
Kim Y, Dawson J, Oreffo R, Tabata Y, Kumar D, Aparicio C
. Gelatin Methacryloyl Hydrogels for Musculoskeletal Tissue Regeneration. Bioengineering (Basel). 2022; 9(7).
PMC: 9311920.
DOI: 10.3390/bioengineering9070332.
View
13.
He J, Sun Y, Gao Q, He C, Yao K, Wang T
. Gelatin Methacryloyl Hydrogel, from Standardization, Performance, to Biomedical Application. Adv Healthc Mater. 2023; 12(23):e2300395.
DOI: 10.1002/adhm.202300395.
View
14.
Ramirez-Garcia-Luna J, Wong T, Chan D, Al-Saran Y, Awlia A, Abou-Rjeili M
. Defective bone repair in diclofenac treated C57Bl6 mice with and without lipopolysaccharide induced systemic inflammation. J Cell Physiol. 2018; 234(3):3078-3087.
DOI: 10.1002/jcp.27128.
View
15.
Nagata Y, Suzuki R
. FcεRI: A Master Regulator of Mast Cell Functions. Cells. 2022; 11(4).
PMC: 8870323.
DOI: 10.3390/cells11040622.
View
16.
Pastwinska J, Zelechowska P, Walczak-Drzewiecka A, Brzezinska-Blaszczyk E, Dastych J
. The Art of Mast Cell Adhesion. Cells. 2020; 9(12).
PMC: 7764012.
DOI: 10.3390/cells9122664.
View
17.
Rujitharanawong C, Yoodee S, Sueksakit K, Peerapen P, Tuchinda P, Kulthanan K
. Systematic comparisons of various markers for mast cell activation in RBL-2H3 cells. Cell Tissue Res. 2022; 390(3):413-428.
DOI: 10.1007/s00441-022-03687-w.
View
18.
Teshima R, Suzuki K, IKEBUCHI H, Terao T
. Possible involvement of phosphorylation of a 36,000-dalton protein of rat basophilic leukemia (RBL-2H3) cell membranes in serotonin release. Mol Immunol. 1986; 23(3):279-84.
DOI: 10.1016/0161-5890(86)90054-4.
View
19.
So C, Meinert C, Xia Q, Robitaille M, Roberts-Thomson S, Monteith G
. Increased matrix stiffness suppresses ATP-induced sustained Ca influx in MDA-MB-231 breast cancer cells. Cell Calcium. 2022; 104:102569.
DOI: 10.1016/j.ceca.2022.102569.
View
20.
Shiki A, Inoh Y, Yokawa S, Furuno T
. Inhibition of degranulation in mast cells attached to a hydrogel through defective microtubule tracts. Exp Cell Res. 2019; 381(2):248-255.
DOI: 10.1016/j.yexcr.2019.05.019.
View