6.
Taylor C, Coffey P, DeLay B, Dively G
. The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stål). PLoS One. 2014; 9(3):e90312.
PMC: 3943947.
DOI: 10.1371/journal.pone.0090312.
View
7.
Li G, Sun J, Meng Y, Yang C, Chen Z, Wu Y
. The Impact of Environmental Habitats and Diets on the Gut Microbiota Diversity of True Bugs (Hemiptera: Heteroptera). Biology (Basel). 2022; 11(7).
PMC: 9312191.
DOI: 10.3390/biology11071039.
View
8.
Higuita Palacio M, Montoya O, Saldamando C, Garcia-Bonilla E, Junca H, Cadavid-Restrepo G
. Dry and Rainy Seasons Significantly Alter the Gut Microbiome Composition and Reveal a Key Enterococcus sp. (Lactobacillales: Enterococcaceae) Core Component in Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn Strain From Northwestern Colombia. J Insect Sci. 2021; 21(6).
PMC: 8567080.
DOI: 10.1093/jisesa/ieab076.
View
9.
Medina V, Sardoy P, Soria M, Vay C, Gutkind G, Zavala J
. Characterized non-transient microbiota from stinkbug (Nezara viridula) midgut deactivates soybean chemical defenses. PLoS One. 2018; 13(7):e0200161.
PMC: 6042706.
DOI: 10.1371/journal.pone.0200161.
View
10.
Coolen S, Rogowska-van der Molen M, Kwakernaak I, van Pelt J, Postma J, van Alen T
. Microbiota of pest insect Nezara viridula mediate detoxification and plant defense repression. ISME J. 2024; 18(1).
PMC: 11195473.
DOI: 10.1093/ismejo/wrae097.
View
11.
Botero J, Sombolestani A, Cnockaert M, Peeters C, Borremans W, De Vuyst L
. A phylogenomic and comparative genomic analysis of Commensalibacter, a versatile insect symbiont. Anim Microbiome. 2023; 5(1):25.
PMC: 10149009.
DOI: 10.1186/s42523-023-00248-6.
View
12.
Yun J, Roh S, Whon T, Jung M, Kim M, Park D
. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014; 80(17):5254-64.
PMC: 4136111.
DOI: 10.1128/AEM.01226-14.
View
13.
Engel P, Moran N
. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev. 2013; 37(5):699-735.
DOI: 10.1111/1574-6976.12025.
View
14.
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B
. Symbiotic bacteria enable olive fly larvae to overcome host defences. R Soc Open Sci. 2015; 2(7):150170.
PMC: 4632588.
DOI: 10.1098/rsos.150170.
View
15.
Parada A, Needham D, Fuhrman J
. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2015; 18(5):1403-14.
DOI: 10.1111/1462-2920.13023.
View
16.
Moran N, Ochman H, Hammer T
. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst. 2020; 50(1):451-475.
PMC: 7392196.
DOI: 10.1146/annurev-ecolsys-110617-062453.
View
17.
Fourie A, Venter S, Slippers B, Fourie G
. sp. nov and sp. are core gut microbiome symbionts of the two-spotted stink bug. Front Microbiol. 2023; 14:1284397.
PMC: 10720322.
DOI: 10.3389/fmicb.2023.1284397.
View
18.
Siozios S, Moran J, Chege M, Hurst G, Paredes J
. Complete Reference Genome Assembly for sp. Strain AMU001, an Acetic Acid Bacterium Isolated from the Gut of Honey Bees. Microbiol Resour Announc. 2019; 8(1).
PMC: 6318369.
DOI: 10.1128/MRA.01459-18.
View
19.
Glockner F, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A
. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017; 261:169-176.
DOI: 10.1016/j.jbiotec.2017.06.1198.
View
20.
Sudakaran S, Kost C, Kaltenpoth M
. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends Microbiol. 2017; 25(5):375-390.
DOI: 10.1016/j.tim.2017.02.014.
View