6.
Wu J, Du G, Zhou J, Chen J
. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng. 2012; 16:48-55.
DOI: 10.1016/j.ymben.2012.11.009.
View
7.
Wang Y, Ravikumar Y, Zhang G, Yun J, Zhang Y, Parvez A
. Biocatalytic Synthesis of D-Allulose Using Novel D-Tagatose 3-Epimerase From . Front Chem. 2020; 8:622325.
PMC: 7758420.
DOI: 10.3389/fchem.2020.622325.
View
8.
Feliciello I, dermic E, Malovic H, Ivankovic S, Zahradka D, Ljubic S
. Regulation of ssb Gene Expression in Escherichia coli. Int J Mol Sci. 2022; 23(18).
PMC: 9505508.
DOI: 10.3390/ijms231810917.
View
9.
Yoshihara A, Kozakai T, Shintani T, Matsutani R, Ohtani K, Iida T
. Purification and characterization of d-allulose 3-epimerase derived from Arthrobacter globiformis M30, a GRAS microorganism. J Biosci Bioeng. 2016; 123(2):170-176.
DOI: 10.1016/j.jbiosc.2016.09.004.
View
10.
Mu W, Zhang W, Fang D, Zhou L, Jiang B, Zhang T
. Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp. Biotechnol Lett. 2013; 35(9):1481-6.
DOI: 10.1007/s10529-013-1230-6.
View
11.
Aristidou A, San K, Bennett G
. Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Biotechnol Prog. 1999; 15(1):140-5.
DOI: 10.1021/bp980115v.
View
12.
Khalilvand A, Aminzadeh S, Sanati M, Mahboudi F
. Media optimization for SHuffle T7 Escherichia coli expressing SUMO-Lispro proinsulin by response surface methodology. BMC Biotechnol. 2022; 22(1):1.
PMC: 8722112.
DOI: 10.1186/s12896-021-00732-4.
View
13.
Chen X, Wang W, Xu J, Yuan Z, Yuan T, Zhang Y
. Production of d-psicose from d-glucose by co-expression of d-psicose 3-epimerase and xylose isomerase. Enzyme Microb Technol. 2017; 105:18-23.
DOI: 10.1016/j.enzmictec.2017.06.003.
View
14.
Jia M, Mu W, Chu F, Zhang X, Jiang B, Zhou L
. A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization. Appl Microbiol Biotechnol. 2013; 98(2):717-25.
DOI: 10.1007/s00253-013-4924-8.
View
15.
Kornberg H
. Routes for fructose utilization by Escherichia coli. J Mol Microbiol Biotechnol. 2001; 3(3):355-9.
View
16.
Gao Y, Li X, Xu H, Sun H, Zhang J, Wu X
. Response surface methodology-based optimization of ' liquid fermentation medium and evaluation of its exopolysaccharide activities. Front Microbiol. 2024; 15:1456461.
PMC: 11409823.
DOI: 10.3389/fmicb.2024.1456461.
View
17.
Chen Z, Gao X, Li Z
. Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose. Front Microbiol. 2022; 13:881037.
PMC: 9048046.
DOI: 10.3389/fmicb.2022.881037.
View
18.
Baek J, Lee M
. Oxidative stress and antioxidant strategies in dermatology. Redox Rep. 2015; 21(4):164-9.
PMC: 8900706.
DOI: 10.1179/1351000215Y.0000000015.
View
19.
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W
. Improving Thermostability and Catalytic Behavior of l-Rhamnose Isomerase from Caldicellulosiruptor obsidiansis OB47 toward d-Allulose by Site-Directed Mutagenesis. J Agric Food Chem. 2018; 66(45):12017-12024.
DOI: 10.1021/acs.jafc.8b05107.
View
20.
Su L, Sun F, Liu Z, Zhang K, Wu J
. Highly efficient production of Clostridium cellulolyticum H10 D-psicose 3-epimerase in Bacillus subtilis and use of these cells to produce D-psicose. Microb Cell Fact. 2018; 17(1):188.
PMC: 6260708.
DOI: 10.1186/s12934-018-1037-1.
View