6.
Sharma K, Schenk P
. Rapid induction of omega-3 fatty acids (EPA) in Nannochloropsis sp. by UV-C radiation. Biotechnol Bioeng. 2015; 112(6):1243-9.
DOI: 10.1002/bit.25544.
View
7.
Dasilva G, Munoz S, Lois S, Medina I
. Non-Targeted LC-MS/MS Assay for Screening Over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations. Molecules. 2019; 24(12).
PMC: 6630234.
DOI: 10.3390/molecules24122276.
View
8.
Wang C, Wang K, Ning J, Luo Q, Yang Y, Huang D
. Transcription Factors From Involved in the Regulation of Astaxanthin Biosynthesis Under High Light-Sodium Acetate Stress. Front Bioeng Biotechnol. 2021; 9:650178.
PMC: 8573195.
DOI: 10.3389/fbioe.2021.650178.
View
9.
Chua E, Schenk P
. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour Technol. 2017; 244(Pt 2):1416-1424.
DOI: 10.1016/j.biortech.2017.05.124.
View
10.
Xie Y, Xiong X, Chen S
. Challenges and Potential in Increasing Lutein Content in Microalgae. Microorganisms. 2021; 9(5).
PMC: 8156089.
DOI: 10.3390/microorganisms9051068.
View
11.
Dou B, Li Y, Wang F, Chen L, Zhang W
. Chassis engineering for high light tolerance in microalgae and cyanobacteria. Crit Rev Biotechnol. 2024; 45(2):257-275.
DOI: 10.1080/07388551.2024.2357368.
View
12.
Poliner E, Busch A, Newton L, Kim Y, Clark R, Gonzalez-Martinez S
. Aureochromes maintain polyunsaturated fatty acid content in Nannochloropsis oceanica. Plant Physiol. 2022; 189(2):906-921.
PMC: 9157131.
DOI: 10.1093/plphys/kiac052.
View
13.
Deckelbaum R, Calder P
. Editorial: Is it time to separate EPA from DHA when using omega-3 fatty acids to protect heart and brain?. Curr Opin Clin Nutr Metab Care. 2020; 23(2):65-67.
DOI: 10.1097/MCO.0000000000000632.
View
14.
Saini R, Prasad P, Sreedhar R, Akhilender Naidu K, Shang X, Keum Y
. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel). 2021; 10(10).
PMC: 8533147.
DOI: 10.3390/antiox10101627.
View
15.
Jovanovic S, Dietrich D, Becker J, Kohlstedt M, Wittmann C
. Microbial production of polyunsaturated fatty acids - high-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr Opin Biotechnol. 2021; 69:199-211.
DOI: 10.1016/j.copbio.2021.01.009.
View
16.
Xin Y, Wu S, Miao C, Xu T, Lu Y
. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel). 2024; 14(4).
PMC: 11051065.
DOI: 10.3390/life14040447.
View
17.
Poliner E, Pulman J, Zienkiewicz K, Childs K, Benning C, Farre E
. A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant Biotechnol J. 2017; 16(1):298-309.
PMC: 5785352.
DOI: 10.1111/pbi.12772.
View
18.
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y
. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv. 2022; 55:107897.
DOI: 10.1016/j.biotechadv.2021.107897.
View
19.
Liu J, Liu M, Pan Y, Shi Y, Hu H
. Metabolic engineering of the oleaginous alga Nannochloropsis for enriching eicosapentaenoic acid in triacylglycerol by combined pulling and pushing strategies. Metab Eng. 2021; 69:163-174.
DOI: 10.1016/j.ymben.2021.11.015.
View
20.
Vitlov Uljevic M, Starcevic K, Masek T, Bocina I, Restovic I, Kevic N
. Dietary DHA/EPA supplementation ameliorates diabetic nephropathy by protecting from distal tubular cell damage. Cell Tissue Res. 2019; 378(2):301-317.
DOI: 10.1007/s00441-019-03058-y.
View