6.
Mahboubi H, Maducdoc M, Yau A, Ziai K, Ghavami Y, Badran K
. Vestibular Schwannoma Excision in Sporadic versus Neurofibromatosis Type 2 Populations. Otolaryngol Head Neck Surg. 2015; 153(5):822-31.
DOI: 10.1177/0194599815573223.
View
7.
Reznitsky M, Petersen M, West N, Stangerup S, Caye-Thomasen P
. Epidemiology Of Vestibular Schwannomas - Prospective 40-Year Data From An Unselected National Cohort. Clin Epidemiol. 2019; 11:981-986.
PMC: 6850685.
DOI: 10.2147/CLEP.S218670.
View
8.
Zanoletti E, Mazzoni A, Martini A, Abbritti R, Albertini R, Alexandre E
. Surgery of the lateral skull base: a 50-year endeavour. Acta Otorhinolaryngol Ital. 2019; 39(SUPPL. 1):S1-S146.
PMC: 6540636.
DOI: 10.14639/0392-100X-suppl.1-39-2019.
View
9.
Schackert G, Ralle S, Martin K, Reiss G, Kowalski M, Sobottka S
. Vestibular Schwannoma Surgery: Outcome and Complications in Lateral Decubitus Position versus Semi-sitting Position-A Personal Learning Curve in a Series of 544 Cases over 3 Decades. World Neurosurg. 2020; 148:e182-e191.
DOI: 10.1016/j.wneu.2020.12.107.
View
10.
Rolston J, Han S, Chang E
. Systemic inaccuracies in the National Surgical Quality Improvement Program database: Implications for accuracy and validity for neurosurgery outcomes research. J Clin Neurosci. 2016; 37:44-47.
DOI: 10.1016/j.jocn.2016.10.045.
View
11.
Ferrandino R, Garneau J, Roof S, Pacheco C, Poojary P, Saha A
. The national landscape of unplanned 30-day readmissions after total laryngectomy. Laryngoscope. 2017; 128(8):1842-1850.
PMC: 5960601.
DOI: 10.1002/lary.27012.
View
12.
Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M
. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg Spine. 2019; 31(4):568-578.
DOI: 10.3171/2019.3.SPINE181367.
View
13.
Bur A, Brant J, Mulvey C, Nicolli E, Brody R, Fischer J
. Association of Clinical Risk Factors and Postoperative Complications With Unplanned Hospital Readmission After Head and Neck Cancer Surgery. JAMA Otolaryngol Head Neck Surg. 2016; 142(12):1184-1190.
DOI: 10.1001/jamaoto.2016.2807.
View
14.
Chen J, Asch S
. Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations. N Engl J Med. 2017; 376(26):2507-2509.
PMC: 5953825.
DOI: 10.1056/NEJMp1702071.
View
15.
Chiu S, Hickman S, Pepper I, Tan J, Yianni J, Jefferis J
. Neuro-Ophthalmic Complications of Vestibular Schwannoma Resection: Current Perspectives. Eye Brain. 2021; 13:241-253.
PMC: 8491867.
DOI: 10.2147/EB.S272326.
View
16.
Hassanipour S, Ghaem H, Arab-Zozani M, Seif M, Fararouei M, Abdzadeh E
. Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: A systematic review and meta-analysis. Injury. 2019; 50(2):244-250.
DOI: 10.1016/j.injury.2019.01.007.
View
17.
Zhang Z, Beck M, Winkler D, Huang B, Sibanda W, Goyal H
. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med. 2018; 6(11):216.
PMC: 6035992.
DOI: 10.21037/atm.2018.05.32.
View
18.
Skolnik A, Loevner L, Sampathu D, Newman J, Lee J, Bagley L
. Cranial Nerve Schwannomas: Diagnostic Imaging Approach. Radiographics. 2016; 36(5):1463-77.
DOI: 10.1148/rg.2016150199.
View
19.
Dziegielewski P, Boyce B, Manning A, Agrawal A, Old M, Ozer E
. Predictors and costs of readmissions at an academic head and neck surgery service. Head Neck. 2015; 38 Suppl 1:E502-10.
DOI: 10.1002/hed.24030.
View
20.
Merath K, Hyer J, Mehta R, Farooq A, Bagante F, Sahara K
. Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery. J Gastrointest Surg. 2019; 24(8):1843-1851.
DOI: 10.1007/s11605-019-04338-2.
View