6.
Chen W, Yao Y, Chen T, Shen W, Tang S, Lee H
. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens Bioelectron. 2020; 172:112788.
DOI: 10.1016/j.bios.2020.112788.
View
7.
Xiao M, Xu N, He A, Yu Z, Chen B, Jin B
. A smartphone-based fluorospectrophotometer and ratiometric fluorescence nanoprobe for on-site quantitation of pesticide residue. iScience. 2023; 26(4):106553.
PMC: 10139973.
DOI: 10.1016/j.isci.2023.106553.
View
8.
Hernandez-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q
. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J Intern Med. 2018; 285(1):19-39.
PMC: 6334517.
DOI: 10.1111/joim.12820.
View
9.
Long K, Woodburn E, Le H, Shah U, Lumetta S, Cunningham B
. Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer. Lab Chip. 2017; 17(19):3246-3257.
PMC: 5614857.
DOI: 10.1039/c7lc00633k.
View
10.
Markvart A, Liokumovich L, Medvedev I, Ushakov N
. Continuous Hue-Based Self-Calibration of a Smartphone Spectrometer Applied to Optical Fiber Fabry-Perot Sensor Interrogation. Sensors (Basel). 2020; 20(21).
PMC: 7663934.
DOI: 10.3390/s20216304.
View
11.
Wong J, Liu F, Yu H
. Mobile app-based quantitative scanometric analysis. Anal Chem. 2014; 86(24):11966-71.
DOI: 10.1021/ac5035727.
View
12.
Banik S, Kaniyala Melanthota S, Arbaaz , Vaz J, Kadambalithaya V, Hussain I
. Recent trends in smartphone-based detection for biomedical applications: a review. Anal Bioanal Chem. 2021; 413(9):2389-2406.
PMC: 7882471.
DOI: 10.1007/s00216-021-03184-z.
View
13.
Yu Z, Gong H, Li M, Tang D
. Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone. Biosens Bioelectron. 2022; 218:114751.
DOI: 10.1016/j.bios.2022.114751.
View
14.
Li A, Yao C, Xia J, Wang H, Cheng Q, Penty R
. Advances in cost-effective integrated spectrometers. Light Sci Appl. 2022; 11(1):174.
PMC: 9174208.
DOI: 10.1038/s41377-022-00853-1.
View
15.
Kong L, Gan Y, Liang T, Zhong L, Pan Y, Kirsanov D
. A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid. Anal Chim Acta. 2019; 1093:150-159.
DOI: 10.1016/j.aca.2019.09.071.
View
16.
Woodburn E, Long K, Cunningham B
. Analysis of Paper-Based Colorimetric Assays With a Smartphone Spectrometer. IEEE Sens J. 2019; 19(2):508-514.
PMC: 6774390.
DOI: 10.1109/JSEN.2018.2876631.
View
17.
Nelis J, Tsagkaris A, Dillon M, Hajslova J, Elliott C
. Smartphone-based optical assays in the food safety field. Trends Analyt Chem. 2020; 129:115934.
PMC: 7457721.
DOI: 10.1016/j.trac.2020.115934.
View
18.
Silva G, Garcia J, Garitta J, Cunha D, Finkler N, Mendiondo E
. Smartphone-based spectrometry system as a prescreening assessment of copper and iron for real time control of water pollution. J Environ Manage. 2022; 323:116214.
DOI: 10.1016/j.jenvman.2022.116214.
View
19.
Ye Y, Wu T, Jiang X, Cao J, Ling X, Mei Q
. Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples. ACS Appl Mater Interfaces. 2020; 12(12):14552-14562.
DOI: 10.1021/acsami.9b23167.
View
20.
Aguirre M, Long K, Canals A, Cunningham B
. Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system. Food Chem. 2018; 272:141-147.
PMC: 6188657.
DOI: 10.1016/j.foodchem.2018.08.002.
View