Multi-locus Genome Wide Association Study Uncovers Genetics of Fresh Seed Dormancy in Groundnut
Overview
Authors
Affiliations
Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data. A total of 9 significant SNP-trait associations (STAs) for FSD were detected on A01, A04, A08, A09, B02, B04, B05, B07 and B09 chromosomes using six ML-GWAS models. Additionally, the SL-GWAS model identified 38 STAs across 14 chromosomes of groundnut. A single STA on chromosome B02 (qFSD-B02-1) was consistently identified in both ML-GWAS and SL-GWAS models. Furthermore, candidate gene mining identified nine high confidence genes viz., Cytochrome P450 705 A, Dormancy/auxin associated family protein, WRKY family transcription factor, Protein kinase superfamily protein, serine/threonine protein phosphatase, myb transcription factor, transcriptional regulator STERILE APETALA-like, ethylene-responsive transcription factor 7-like and F-box protein interaction domain protein as prime regulators involved in Abscisic acid/Gibberellic acid signaling pathways regulating dormancy/germination. In addition, three of the allele-specific markers developed from the identified STAs were validated across a diverse panel. These markers hold potential for increasing dormancy in groundnut through marker-assisted selection (MAS). Thus, this research offers insights into genetic and molecular mechanisms underlying groundnut seed dormancy in addition to providing markers and donors for breeding future varieties with 2-3 weeks of FSD.