TRPC1 Links Calcium Signaling to Cellular Senescence in the Protection Against Posttraumatic Osteoarthritis
Overview
General Medicine
Authors
Affiliations
Transient receptor potential channel 1 (TRPC1) is a widely expressed mechanosensitive ion channel located within the endoplasmic reticulum membrane, crucial for refilling depleted internal calcium stores during activation of calcium-dependent signaling pathways. Here, we have demonstrated that TRPC1 activity is protective within cartilage homeostasis in the prevention of cellular senescence-associated cartilage breakdown during mechanical and inflammatory challenge. We revealed that TRPC1 loss is associated with early stages of osteoarthritis (OA) and plays a nonredundant role in calcium signaling in chondrocytes. Trpc1-/- mice subjected to destabilization of the medial meniscus-induced OA developed a more severe OA phenotype than WT controls. During early OA development, Trpc1-/- mice displayed an increased chondrocyte survival rate; however, remaining cells displayed features of senescence including p16INK4a expression and decreased Sox9. RNA-Seq identified differentially expressed genes related to cell number, apoptosis, and extracellular matrix organization. Trpc1-/- chondrocytes exhibited accelerated dedifferentiation, while demonstrating an increased susceptibility to cellular senescence. Targeting the mechanism of TRPC1 activation may be a promising therapeutic strategy in OA prevention.