6.
Gravel S, Chapman J, Magill C, Jackson S
. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 2008; 22(20):2767-72.
PMC: 2569880.
DOI: 10.1101/gad.503108.
View
7.
Hartwell L
. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992; 71(4):543-6.
DOI: 10.1016/0092-8674(92)90586-2.
View
8.
Hortobagyi G, Stemmer S, Burris H, Yap Y, Sonke G, Paluch-Shimon S
. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med. 2016; 375(18):1738-1748.
DOI: 10.1056/NEJMoa1609709.
View
9.
Infante J, Cassier P, Gerecitano J, Witteveen P, Chugh R, Ribrag V
. A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas. Clin Cancer Res. 2016; 22(23):5696-5705.
PMC: 5621377.
DOI: 10.1158/1078-0432.CCR-16-1248.
View
10.
Jette N, Lees-Miller S
. The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol. 2015; 117(2-3):194-205.
PMC: 4502593.
DOI: 10.1016/j.pbiomolbio.2014.12.003.
View
11.
Kuerbitz S, Plunkett B, Walsh W, Kastan M
. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A. 1992; 89(16):7491-5.
PMC: 49736.
DOI: 10.1073/pnas.89.16.7491.
View
12.
Kwapisz D
. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res Treat. 2017; 166(1):41-54.
DOI: 10.1007/s10549-017-4385-3.
View
13.
Lee H, Lee W, Kang C, Ku C, Cho Y, Lee E
. A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer. Cancer Lett. 2018; 417:131-140.
DOI: 10.1016/j.canlet.2017.12.037.
View
14.
Li Y, Li H, Peng W, He X, Huang M, Qiu D
. DNA-dependent protein kinase catalytic subunit inhibitor reverses acquired radioresistance in lung adenocarcinoma by suppressing DNA repair. Mol Med Rep. 2015; 12(1):1328-34.
DOI: 10.3892/mmr.2015.3505.
View
15.
Li X, Seebacher N, Garbutt C, Ma H, Gao P, Xiao T
. Inhibition of cyclin-dependent kinase 4 as a potential therapeutic strategy for treatment of synovial sarcoma. Cell Death Dis. 2018; 9(5):446.
PMC: 5906661.
DOI: 10.1038/s41419-018-0474-4.
View
16.
Lin Y, Nagasawa H, Little J, Kato T, Shih H, Xie X
. Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles. PLoS One. 2014; 9(4):e93579.
PMC: 3979685.
DOI: 10.1371/journal.pone.0093579.
View
17.
Liu Y, Majumder S, McCall W, Sartor C, Mohler J, Gregory C
. Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Cancer Res. 2005; 65(8):3404-9.
DOI: 10.1158/0008-5472.CAN-04-4292.
View
18.
Ma H, Takahashi A, Yoshida Y, Adachi A, Kanai T, Ohno T
. Combining carbon ion irradiation and non-homologous end-joining repair inhibitor NU7026 efficiently kills cancer cells. Radiat Oncol. 2015; 10:225.
PMC: 4638098.
DOI: 10.1186/s13014-015-0536-z.
View
19.
Marampon F, Gravina G, Ju X, Vetuschi A, Sferra R, Casimiro M
. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget. 2015; 7(5):5383-400.
PMC: 4868693.
DOI: 10.18632/oncotarget.6579.
View
20.
Marechal A, Zou L
. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013; 5(9).
PMC: 3753707.
DOI: 10.1101/cshperspect.a012716.
View