6.
Chen S, Zhou Y, Chen Y, Gu J
. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018; 34(17):i884-i890.
PMC: 6129281.
DOI: 10.1093/bioinformatics/bty560.
View
7.
Pristov K, Ghannoum M
. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019; 25(7):792-798.
DOI: 10.1016/j.cmi.2019.03.028.
View
8.
Tripathi A, Liverani E, Tsygankov A, Puri S
. Iron alters the cell wall composition and intracellular lactate to affect susceptibility to antifungals and host immune response. J Biol Chem. 2020; 295(29):10032-10044.
PMC: 7380197.
DOI: 10.1074/jbc.RA120.013413.
View
9.
Lopes J, Lionakis M
. Pathogenesis and virulence of . Virulence. 2021; 13(1):89-121.
PMC: 9728475.
DOI: 10.1080/21505594.2021.2019950.
View
10.
Mio T, Yabe T, Sudoh M, Satoh Y, Nakajima T, Arisawa M
. Role of three chitin synthase genes in the growth of Candida albicans. J Bacteriol. 1996; 178(8):2416-9.
PMC: 177954.
DOI: 10.1128/jb.178.8.2416-2419.1996.
View
11.
Pradhan A, Avelar G, Bain J, Childers D, Pelletier C, Larcombe D
. Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun. 2019; 10(1):5315.
PMC: 6876565.
DOI: 10.1038/s41467-019-13298-9.
View
12.
Wang T, Shao J, Da W, Li Q, Shi G, Wu D
. Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Species and Efflux-Associated Antifungal Mechanism. Front Microbiol. 2018; 9:2892.
PMC: 6287112.
DOI: 10.3389/fmicb.2018.02892.
View
13.
Roy M, Karhana S, Shamsuzzaman M, Khan M
. Recent drug development and treatments for fungal infections. Braz J Microbiol. 2023; 54(3):1695-1716.
PMC: 10484882.
DOI: 10.1007/s42770-023-00999-z.
View
14.
Calderon J, Zavrel M, Ragni E, Fonzi W, Rupp S, Popolo L
. PHR1, a pH-regulated gene of Candida albicans encoding a glucan-remodelling enzyme, is required for adhesion and invasion. Microbiology (Reading). 2010; 156(Pt 8):2484-2494.
DOI: 10.1099/mic.0.038000-0.
View
15.
Chen T, Wagner A, Reynolds T
. When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ß(1,3)-Glucan Exposure in . Front Fungal Biol. 2023; 3.
PMC: 10003681.
DOI: 10.3389/ffunb.2022.842501.
View
16.
Brennan-Krohn T, Friar L, Ditelberg S, Kirby J
. Evaluation of the Synergistic Activity of Antibacterial and Antifungal Drugs against Candida auris Using an Inkjet Printer-Assisted Method. Antimicrob Agents Chemother. 2021; 65(10):e0026821.
PMC: 8448112.
DOI: 10.1128/AAC.00268-21.
View
17.
Galan-Diez M, Arana D, Serrano-Gomez D, Kremer L, Casasnovas J, Ortega M
. Candida albicans beta-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1. Infect Immun. 2010; 78(4):1426-36.
PMC: 2849429.
DOI: 10.1128/IAI.00989-09.
View
18.
Wang T, Shi G, Shao J, Wu D, Yan Y, Zhang M
. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb Pathog. 2015; 87:21-9.
DOI: 10.1016/j.micpath.2015.07.006.
View
19.
Montoya M, Beattie S, Alden K, Krysan D
. Derivatives of the Antimalarial Drug Mefloquine Are Broad-Spectrum Antifungal Molecules with Activity against Drug-Resistant Clinical Isolates. Antimicrob Agents Chemother. 2020; 64(3).
PMC: 7038245.
DOI: 10.1128/AAC.02331-19.
View
20.
Cortes J, Curto M, Carvalho V, Perez P, Ribas J
. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol Adv. 2019; 37(6):107352.
DOI: 10.1016/j.biotechadv.2019.02.008.
View