6.
Gaudino S, Giordano C, Magnani F, Cottonaro S, Infante A, Sabatino G
. Neuro-Oncology Multidisciplinary Tumor Board: The Point of View of the Neuroradiologist. J Pers Med. 2022; 12(2).
PMC: 8875699.
DOI: 10.3390/jpm12020135.
View
7.
Plenge E, Poot D, Bernsen M, Kotek G, Houston G, Wielopolski P
. Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time?. Magn Reson Med. 2012; 68(6):1983-93.
DOI: 10.1002/mrm.24187.
View
8.
Zheng Y, Carrillo-Perez F, Pizurica M, Heiland D, Gevaert O
. Spatial cellular architecture predicts prognosis in glioblastoma. Nat Commun. 2023; 14(1):4122.
PMC: 10336135.
DOI: 10.1038/s41467-023-39933-0.
View
9.
Ellingson B, Wen P, Cloughesy T
. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials. Neurotherapeutics. 2017; 14(2):307-320.
PMC: 5398984.
DOI: 10.1007/s13311-016-0507-6.
View
10.
Wu J, Li C, Gensheimer M, Padda S, Kato F, Shirato H
. Radiological tumor classification across imaging modality and histology. Nat Mach Intell. 2021; 3:787-798.
PMC: 8612063.
DOI: 10.1038/s42256-021-00377-0.
View
11.
Yang R, Roth C, Ward R, deJesus J, Mitchell D
. Optimizing abdominal MR imaging: approaches to common problems. Radiographics. 2010; 30(1):185-99.
DOI: 10.1148/rg.301095076.
View
12.
Reuss D
. Updates on the WHO diagnosis of IDH-mutant glioma. J Neurooncol. 2023; 162(3):461-469.
PMC: 10227121.
DOI: 10.1007/s11060-023-04250-5.
View
13.
Lustig M, Donoho D, Pauly J
. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007; 58(6):1182-95.
DOI: 10.1002/mrm.21391.
View
14.
Estler A, Hauser T, Mengel A, Brunnee M, Zerweck L, Richter V
. Deep Learning Accelerated Image Reconstruction of Fluid-Attenuated Inversion Recovery Sequence in Brain Imaging: Reduction of Acquisition Time and Improvement of Image Quality. Acad Radiol. 2023; 31(1):180-186.
DOI: 10.1016/j.acra.2023.05.010.
View
15.
Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan G
. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges. J Digit Imaging. 2022; 36(1):204-230.
PMC: 9984670.
DOI: 10.1007/s10278-022-00721-9.
View
16.
Deshmane A, Gulani V, Griswold M, Seiberlich N
. Parallel MR imaging. J Magn Reson Imaging. 2012; 36(1):55-72.
PMC: 4459721.
DOI: 10.1002/jmri.23639.
View
17.
Gassenmaier S, Afat S, Nickel D, Mostapha M, Herrmann J, Othman A
. Deep learning-accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality. Eur J Radiol. 2021; 137:109600.
DOI: 10.1016/j.ejrad.2021.109600.
View
18.
Kim M, Kim H, Kim H, Park J, Park S, Kim Y
. Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology. 2020; 298(1):114-122.
DOI: 10.1148/radiol.2020200723.
View
19.
Niyazi M, Brada M, Chalmers A, Combs S, Erridge S, Fiorentino A
. ESTRO-ACROP guideline "target delineation of glioblastomas". Radiother Oncol. 2016; 118(1):35-42.
DOI: 10.1016/j.radonc.2015.12.003.
View
20.
Jonsson J, Nyholm T, Soderkvist K
. The rationale for MR-only treatment planning for external radiotherapy. Clin Transl Radiat Oncol. 2019; 18:60-65.
PMC: 6630106.
DOI: 10.1016/j.ctro.2019.03.005.
View