6.
Compton P, Zamdborg L, Thomas P, Kelleher N
. On the scalability and requirements of whole protein mass spectrometry. Anal Chem. 2011; 83(17):6868-74.
PMC: 3165072.
DOI: 10.1021/ac2010795.
View
7.
Elias J, Gygi S
. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007; 4(3):207-14.
DOI: 10.1038/nmeth1019.
View
8.
Heel S, Breuker K
. Investigating the Intramolecular Competition of Different RNA Binding Motifs for Neomycin B by Native Top-Down Mass Spectrometry. Chempluschem. 2024; 89(8):e202400178.
DOI: 10.1002/cplu.202400178.
View
9.
Lantz C, Zenaidee M, Wei B, Hemminger Z, Ogorzalek Loo R, Loo J
. ClipsMS: An Algorithm for Analyzing Internal Fragments Resulting from Top-Down Mass Spectrometry. J Proteome Res. 2021; 20(4):1928-1935.
PMC: 8174100.
DOI: 10.1021/acs.jproteome.0c00952.
View
10.
Chen B, Brown K, Lin Z, Ge Y
. Top-Down Proteomics: Ready for Prime Time?. Anal Chem. 2017; 90(1):110-127.
PMC: 6138622.
DOI: 10.1021/acs.analchem.7b04747.
View
11.
Gao Y, McLuckey S
. Collision-induced dissociation of oligonucleotide anions fully modified at the 2'-position of the ribose: 2'-F/-H and 2'-F/-H/-OMe mix-mers. J Mass Spectrom. 2012; 47(3):364-9.
DOI: 10.1002/jms.2044.
View
12.
Oberacher H, Wellenzohn B, Huber C
. Comparative sequencing of nucleic acids by liquid chromatography-tandem mass spectrometry. Anal Chem. 2002; 74(1):211-8.
DOI: 10.1021/ac015595a.
View
13.
Glasner H, Riml C, Micura R, Breuker K
. Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Res. 2017; 45(13):8014-8025.
PMC: 5570050.
DOI: 10.1093/nar/gkx470.
View
14.
Frank A, Pesavento J, Mizzen C, Kelleher N, Pevzner P
. Interpreting top-down mass spectra using spectral alignment. Anal Chem. 2008; 80(7):2499-505.
DOI: 10.1021/ac702324u.
View
15.
Nyakas A, Blum L, Stucki S, Reymond J, Schurch S
. OMA and OPA--software-supported mass spectra analysis of native and modified nucleic acids. J Am Soc Mass Spectrom. 2012; 24(2):249-56.
DOI: 10.1007/s13361-012-0529-1.
View
16.
Palasser M, Breuker K
. RNA Chemical Labeling with Site-Specific, Relative Quantification by Mass Spectrometry for the Structural Study of a Neomycin-Sensing Riboswitch Aptamer Domain. Chempluschem. 2022; 87(11):e202200256.
PMC: 9828840.
DOI: 10.1002/cplu.202200256.
View
17.
Chen G, Warrack B, Goodenough A, Wei H, Wang-Iverson D, Tymiak A
. Characterization of protein therapeutics by mass spectrometry: recent developments and future directions. Drug Discov Today. 2010; 16(1-2):58-64.
DOI: 10.1016/j.drudis.2010.11.003.
View
18.
Zamdborg L, LeDuc R, Glowacz K, Kim Y, Viswanathan V, Spaulding I
. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res. 2007; 35(Web Server issue):W701-6.
PMC: 1933126.
DOI: 10.1093/nar/gkm371.
View
19.
Rockwood A, Palmblad M
. Isotopic distributions. Methods Mol Biol. 2013; 1007:65-99.
DOI: 10.1007/978-1-62703-392-3_3.
View
20.
Heel S, Juen F, Bartosik K, Micura R, Kreutz C, Breuker K
. Resolving the intricate binding of neomycin B to multiple binding motifs of a neomycin-sensing riboswitch aptamer by native top-down mass spectrometry and NMR spectroscopy. Nucleic Acids Res. 2024; 52(8):4691-4701.
PMC: 11077050.
DOI: 10.1093/nar/gkae224.
View