Open-source LLMs for Text Annotation: a Practical Guide for Model Setting and Fine-tuning
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Supplementary Information: The online version contains supplementary material available at 10.1007/s42001-024-00345-9.
Citing Articles
Fung M, Tang E, Wu T, Luk Y, Au I, Liu X NPJ Digit Med. 2025; 8(1):134.
PMID: 40025285 PMC: 11873034. DOI: 10.1038/s41746-025-01528-y.
References
1.
Rudin C
. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2022; 1(5):206-215.
PMC: 9122117.
DOI: 10.1038/s42256-019-0048-x.
View
2.
Gilardi F, Alizadeh M, Kubli M
. ChatGPT outperforms crowd workers for text-annotation tasks. Proc Natl Acad Sci U S A. 2023; 120(30):e2305016120.
PMC: 10372638.
DOI: 10.1073/pnas.2305016120.
View
3.
Frei J, Kramer F
. Annotated dataset creation through large language models for non-english medical NLP. J Biomed Inform. 2023; 145:104478.
DOI: 10.1016/j.jbi.2023.104478.
View
4.
van Dis E, Bollen J, Zuidema W, van Rooij R, Bockting C
. ChatGPT: five priorities for research. Nature. 2023; 614(7947):224-226.
DOI: 10.1038/d41586-023-00288-7.
View
5.
Alizadeh M, Hoes E, Gilardi F
. Tokenization of social media engagements increases the sharing of false (and other) news but penalization moderates it. Sci Rep. 2023; 13(1):13703.
PMC: 10444751.
DOI: 10.1038/s41598-023-40716-2.
View