6.
Vincent J, Stacey M, Stacey G, Bilyeu K
. Phytic Acid and Inorganic Phosphate Composition in Soybean Lines with Independent IPK1 Mutations. Plant Genome. 2020; 8(1):eplantgenome2014.10.0077.
DOI: 10.3835/plantgenome2014.10.0077.
View
7.
Bellieny-Rabelo D, de Oliveira E, Ribeiro E, Costa E, Oliveira A, Motta Venancio T
. Transcriptome analysis uncovers key regulatory and metabolic aspects of soybean embryonic axes during germination. Sci Rep. 2016; 6:36009.
PMC: 5099898.
DOI: 10.1038/srep36009.
View
8.
Valliyodan B, Ye H, Song L, Murphy M, Shannon J, Nguyen H
. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot. 2016; 68(8):1835-1849.
DOI: 10.1093/jxb/erw433.
View
9.
Yuan F, Zhu D, Deng B, Fu X, Dong D, Zhu S
. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr). J Agric Food Chem. 2009; 57(9):3632-8.
DOI: 10.1021/jf803862a.
View
10.
Bisht A, Saini D, Kaur B, Batra R, Kaur S, Kaur I
. Multi-omics assisted breeding for biotic stress resistance in soybean. Mol Biol Rep. 2023; 50(4):3787-3814.
DOI: 10.1007/s11033-023-08260-4.
View
11.
Koramutla M, Negi M, Ayele B
. Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes (Basel). 2021; 12(10).
PMC: 8535772.
DOI: 10.3390/genes12101620.
View
12.
Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song B
. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics. 2021; 22(1):453.
PMC: 8207594.
DOI: 10.1186/s12864-021-07783-z.
View
13.
Guo M, Liu J, Ma X, Luo D, Gong Z, Lu M
. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. Front Plant Sci. 2016; 7:114.
PMC: 4746267.
DOI: 10.3389/fpls.2016.00114.
View
14.
Cheng M, Ko K, Chang W, Kuo W, Chen G, Lin T
. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 2015; 83(5):926-39.
DOI: 10.1111/tpj.12940.
View
15.
Liu H, Li X, Zhang Q, Yuan P, Liu L, King G
. Integrating a genome-wide association study with transcriptomic data to predict candidate genes and favourable haplotypes influencing Brassica napus seed phytate. DNA Res. 2021; 28(5).
PMC: 8435555.
DOI: 10.1093/dnares/dsab011.
View
16.
Frank T, Norenberg S, Engel K
. Metabolite profiling of two novel low phytic acid (lpa) soybean mutants. J Agric Food Chem. 2009; 57(14):6408-16.
DOI: 10.1021/jf901019y.
View
17.
DeMers L, Raboy V, Li S, Saghai Maroof M
. Network Inference of Transcriptional Regulation in Germinating Low Phytic Acid Soybean Seeds. Front Plant Sci. 2021; 12:708286.
PMC: 8438133.
DOI: 10.3389/fpls.2021.708286.
View
18.
Manoharlal R, Saiprasad G
. Assessment of germination, phytochemicals, and transcriptional responses to ethephon priming in soybean [ (L.) Merrill]. Genome. 2019; 62(12):769-783.
DOI: 10.1139/gen-2019-0013.
View
19.
Feng Z, Ding C, Li W, Wang D, Cui D
. Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chem. 2019; 310:125914.
DOI: 10.1016/j.foodchem.2019.125914.
View
20.
Wang W, Xie Y, Liu L, King G, White P, Ding G
. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. J Agric Food Chem. 2022; 70(11):3375-3390.
DOI: 10.1021/acs.jafc.1c06831.
View