6.
Tan Y, Wang L, Gao J, Ma J, Yu H, Zhang Y
. Multiomics Integrative Analysis for Discovering the Potential Mechanism of Dioscin against Hyperuricemia Mice. J Proteome Res. 2020; 20(1):645-660.
DOI: 10.1021/acs.jproteome.0c00584.
View
7.
Czajkowska A, Kazmierczak-Siedlecka K, Jamiol-Milc D, Gutowska I, Skonieczna-Zydecka K
. Gut microbiota and its metabolic potential. Eur Rev Med Pharmacol Sci. 2020; 24(24):12971-12977.
DOI: 10.26355/eurrev_202012_24201.
View
8.
Li N, Amatjan M, He P, Wu M, Yan H, Shao X
. Whole transcriptome expression profiles in kidney samples from rats with hyperuricaemic nephropathy. PLoS One. 2022; 17(12):e0276591.
PMC: 9762607.
DOI: 10.1371/journal.pone.0276591.
View
9.
Xu D, Lv Q, Wang X, Cui X, Zhao P, Yang X
. Hyperuricemia is associated with impaired intestinal permeability in mice. Am J Physiol Gastrointest Liver Physiol. 2019; 317(4):G484-G492.
DOI: 10.1152/ajpgi.00151.2019.
View
10.
Li N, Amatjan M, He P, Zhang B, Mai X, Jiang Q
. Integration of network pharmacology and intestinal flora to investigate the mechanism of action of Chinese herbal formula in attenuating adenine and ethambutol hydrochloride-induced hyperuricemic nephropathy in rats. Pharm Biol. 2022; 60(1):2338-2354.
PMC: 9897651.
DOI: 10.1080/13880209.2022.2147551.
View
11.
Asseri A, Bakhsh T, Abuzahrah S, Ali S, Rather I
. The gut dysbiosis-cancer axis: illuminating novel insights and implications for clinical practice. Front Pharmacol. 2023; 14:1208044.
PMC: 10288883.
DOI: 10.3389/fphar.2023.1208044.
View
12.
Reynolds R, Irvin M, Bridges S, Kim H, Merriman T, Arnett D
. Genetic correlations between traits associated with hyperuricemia, gout, and comorbidities. Eur J Hum Genet. 2021; 29(9):1438-1445.
PMC: 8440599.
DOI: 10.1038/s41431-021-00830-z.
View
13.
Pan L, Han P, Ma S, Peng R, Wang C, Kong W
. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B. 2020; 10(2):249-261.
PMC: 7016297.
DOI: 10.1016/j.apsb.2019.10.007.
View
14.
Guo Y, Li H, Liu Z, Li C, Chen Y, Jiang C
. Impaired intestinal barrier function in a mouse model of hyperuricemia. Mol Med Rep. 2019; 20(4):3292-3300.
PMC: 6755192.
DOI: 10.3892/mmr.2019.10586.
View
15.
Qin N, Qin M, Shi W, Kong L, Wang L, Xu G
. Investigation of pathogenesis of hyperuricemia based on untargeted and targeted metabolomics. Sci Rep. 2022; 12(1):13980.
PMC: 9386008.
DOI: 10.1038/s41598-022-18361-y.
View
16.
Zhang H, Xiu M, Li H, Li M, Xue X, He Y
. Cadmium exposure dysregulates purine metabolism and homeostasis across the gut-liver axis in a mouse model. Ecotoxicol Environ Saf. 2023; 266:115587.
DOI: 10.1016/j.ecoenv.2023.115587.
View
17.
Dehlin M, Jacobsson L, Roddy E
. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020; 16(7):380-390.
DOI: 10.1038/s41584-020-0441-1.
View
18.
Wei X, Jia X, Liu R, Zhang S, Liu S, An J
. Metabolic pathway analysis of hyperuricaemia patients with hyperlipidaemia based on high-throughput mass spectrometry: a case‒control study. Lipids Health Dis. 2022; 21(1):151.
PMC: 9805114.
DOI: 10.1186/s12944-022-01765-0.
View
19.
Wang Y, Chen Y, Hsiao C, Pan M, Wang B, Chen Y
. Induction of Autophagy by Pterostilbene Contributes to the Prevention of Renal Fibrosis via Attenuating NLRP3 Inflammasome Activation and Epithelial-Mesenchymal Transition. Front Cell Dev Biol. 2020; 8:436.
PMC: 7283393.
DOI: 10.3389/fcell.2020.00436.
View
20.
Chen-Xu M, Yokose C, Rai S, Pillinger M, Choi H
. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol. 2019; 71(6):991-999.
PMC: 6536335.
DOI: 10.1002/art.40807.
View