6.
Alford K, Daley S, Banerjee S, Hamlyn E, Trotman D, Vera J
. "A fog that impacts everything": a qualitative study of health-related quality of life in people living with HIV who have cognitive impairment. Qual Life Res. 2022; 31(10):3019-3030.
PMC: 9470604.
DOI: 10.1007/s11136-022-03150-x.
View
7.
Philiastides M, Tu T, Sajda P
. Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI. Annu Rev Neurosci. 2021; 44:315-334.
DOI: 10.1146/annurev-neuro-100220-093239.
View
8.
Thames A, Sayegh P, Terashima K, Foley J, Cho A, Arentoft A
. Increased subcortical neural activity among HIV+ individuals during a lexical retrieval task. Neurobiol Dis. 2015; 92(Pt B):175-82.
PMC: 4834288.
DOI: 10.1016/j.nbd.2015.10.017.
View
9.
Li Y, Zou G, Shao Y, Yao P, Liu J, Zhou S
. Sleep discrepancy is associated with alterations in the salience network in patients with insomnia disorder: An EEG-fMRI study. Neuroimage Clin. 2022; 35:103111.
PMC: 9421431.
DOI: 10.1016/j.nicl.2022.103111.
View
10.
Castelo J, Sherman S, Courtney M, Melrose R, Stern C
. Altered hippocampal-prefrontal activation in HIV patients during episodic memory encoding. Neurology. 2006; 66(11):1688-95.
DOI: 10.1212/01.wnl.0000218305.09183.70.
View
11.
Chang L, Speck O, Miller E, Braun J, Jovicich J, Koch C
. Neural correlates of attention and working memory deficits in HIV patients. Neurology. 2001; 57(6):1001-7.
DOI: 10.1212/wnl.57.6.1001.
View
12.
Tartar J, Sheehan C, Nash A, Starratt C, Puga A, Widmayer S
. ERPs differ from neurometric tests in assessing HIV-associated cognitive deficit. Neuroreport. 2004; 15(10):1675-8.
DOI: 10.1097/01.wnr.0000134992.74181.4b.
View
13.
Eggers C, Arendt G, Hahn K, Husstedt I, Maschke M, Neuen-Jacob E
. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol. 2017; 264(8):1715-1727.
PMC: 5533849.
DOI: 10.1007/s00415-017-8503-2.
View
14.
Ciccarelli N
. Considerations on nosology for HIV-associated neurocognitive disorders: it is time to update?. Infection. 2019; 48(1):37-42.
DOI: 10.1007/s15010-019-01373-8.
View
15.
Fernandez-Cruz A, Fellows L
. The electrophysiology of neuroHIV: A systematic review of EEG and MEG studies in people with HIV infection since the advent of highly-active antiretroviral therapy. Clin Neurophysiol. 2017; 128(6):965-976.
DOI: 10.1016/j.clinph.2017.03.035.
View
16.
Scrivener C
. When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI. Front Neurosci. 2021; 15:636424.
PMC: 8276697.
DOI: 10.3389/fnins.2021.636424.
View
17.
Horvath A, Szucs A, Csukly G, Sakovics A, Stefanics G, Kamondi A
. EEG and ERP biomarkers of Alzheimer's disease: a critical review. Front Biosci (Landmark Ed). 2017; 23(2):183-220.
DOI: 10.2741/4587.
View
18.
Zang Y, Jiang T, Lu Y, He Y, Tian L
. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004; 22(1):394-400.
DOI: 10.1016/j.neuroimage.2003.12.030.
View
19.
Brew B, Barnes S
. The impact of HIV central nervous system persistence on pathogenesis. AIDS. 2019; 33 Suppl 2:S113-S121.
DOI: 10.1097/QAD.0000000000002251.
View
20.
Polich J, Ilan A, Poceta J, Mitler M, Darko D
. Neuroelectric assessment of HIV: EEG, ERP, and viral load. Int J Psychophysiol. 2000; 38(1):97-108.
DOI: 10.1016/s0167-8760(00)00133-1.
View