6.
Dean J, Mulkey D, Garcia 3rd A, Putnam R, Henderson 3rd R
. Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J Appl Physiol (1985). 2003; 95(3):883-909.
DOI: 10.1152/japplphysiol.00920.2002.
View
7.
Reyes B, Posada-Quintero H, Bales J, Clement A, Pins G, Swiston A
. Novel electrodes for underwater ECG monitoring. IEEE Trans Biomed Eng. 2014; 61(6):1863-76.
DOI: 10.1109/TBME.2014.2309293.
View
8.
Posada-Quintero H, Landon C, Stavitzski N, Dean J, Chon K
. Seizures Caused by Exposure to Hyperbaric Oxygen in Rats Can Be Predicted by Early Changes in Electrodermal Activity. Front Physiol. 2022; 12:767386.
PMC: 8767060.
DOI: 10.3389/fphys.2021.767386.
View
9.
Freeman R, Chapleau M
. Testing the autonomic nervous system. Handb Clin Neurol. 2013; 115:115-36.
DOI: 10.1016/B978-0-444-52902-2.00007-2.
View
10.
Gempp E, Louge P, Blatteau J, Hugon M
. Risks factors for recurrent neurological decompression sickness in recreational divers: a case-control study. J Sports Med Phys Fitness. 2012; 52(5):530-6.
View
11.
Dainer H, Nelson J, Brass K, Montcalm-Smith E, Mahon R
. Short oxygen prebreathing and intravenous perfluorocarbon emulsion reduces morbidity and mortality in a swine saturation model of decompression sickness. J Appl Physiol (1985). 2006; 102(3):1099-104.
DOI: 10.1152/japplphysiol.01539.2005.
View
12.
Blogg S, Gennser M, Loveman G, Seddon F, Thacker J, White M
. The effect of breathing hyperoxic gas during simulated submarine escape on venous gas emboli and decompression illness. Undersea Hyperb Med. 2003; 30(3):163-74.
View
13.
Youden W
. Index for rating diagnostic tests. Cancer. 1950; 3(1):32-5.
DOI: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3.
View
14.
Poh M, Loddenkemper T, Swenson N, Goyal S, Madsen J, Picard R
. Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2010; 2010:4415-8.
DOI: 10.1109/IEMBS.2010.5625988.
View
15.
Kleckner I, Jones R, Wilder-Smith O, Wormwood J, Akcakaya M, Quigley K
. Simple, Transparent, and Flexible Automated Quality Assessment Procedures for Ambulatory Electrodermal Activity Data. IEEE Trans Biomed Eng. 2017; 65(7):1460-1467.
PMC: 5880745.
DOI: 10.1109/TBME.2017.2758643.
View
16.
Lund V, Kentala E, Scheinin H, Klossner J, Sariola-Heinonen K, Jalonen J
. Hyperbaric oxygen increases parasympathetic activity in professional divers. Acta Physiol Scand. 2000; 170(1):39-44.
DOI: 10.1046/j.1365-201x.2000.00761.x.
View
17.
Chouchou F, Pichot V, Garet M, Barthelemy J, Roche F
. Dominance in cardiac parasympathetic activity during real recreational SCUBA diving. Eur J Appl Physiol. 2009; 106(3):345-52.
DOI: 10.1007/s00421-009-1010-0.
View
18.
Poh M, Loddenkemper T, Reinsberger C, Swenson N, Goyal S, Sabtala M
. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia. 2012; 53(5):e93-7.
DOI: 10.1111/j.1528-1167.2012.03444.x.
View
19.
Posada-Quintero H, Florian J, Orjuela-Canon A, Aljama-Corrales T, Charleston-Villalobos S, Chon K
. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann Biomed Eng. 2016; 44(10):3124-3135.
DOI: 10.1007/s10439-016-1606-6.
View
20.
Posada-Quintero H, Derrick B, Winstead-Derlega C, Gonzalez S, Ellis M, Freiberger J
. Time-varying Spectral Index of Electrodermal Activity to Predict Central Nervous System Oxygen Toxicity Symptoms in Divers: Preliminary results. Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:1242-1245.
DOI: 10.1109/EMBC46164.2021.9629924.
View