Cytotoxic Effects of Bee Venom-loaded ZIF-8 Nanoparticles on Thyroid Cancer Cells: a Promising Strategy for Targeted Therapy
Authors
Affiliations
Thyroid cancer continues to be a notable health issue, requiring the creation of novel treatment methods to enhance patient results. The objective of this study is to investigate the potential of utilizing bee venom (BV)-loaded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as a novel strategy for specifically targeting and treating medullary thyroid cancer cells. Due to their wide surface area and configurable pore size, ZIF-8 nanoparticles are ideal for drug delivery. Bee venom's cytotoxic capabilities are used in ZIF-8 nanoparticles to target thyroid cancer cells more effectively. ZIF-8 nanoparticles containing bee venom were tested on TT medullary thyroid cancer cell lines. The effects of these nanoparticles on cell viability, proliferation, and apoptosis were investigated. IC value at 24 h for BV-ZIF-8 nanoparticles in TT medullary thyroid carcinoma cells was determined to be 17.19 µg/mL, while the IC value at 48 h was determined to be 16.39 µg/mL. It has been demonstrated that nanoparticle treatment upregulates the Bax and caspase-3 genes while downregulating the Bcl-2, CCND1, and CDK4 genes. Additionally, it was observed that oxidative stress was triggered in the nanoparticle-treated group. Furthermore, an examination of its mechanisms was conducted, with a specific emphasis on the modulation of critical signaling pathways that are implicated in the progression of cancer. In thyroid cancer cells, ZIF-8 nanoparticles infused with bee venom promote programmed cell death and impair key biological processes.