» Articles » PMID: 39695715

Urinary Proteomics Identifies Distinct Immunological Profiles of Sepsis Associated AKI Sub-phenotypes

Abstract

Background: Patients with sepsis-induced AKI can be classified into two distinct sub-phenotypes (AKI-SP1, AKI-SP2) that differ in clinical outcomes and response to treatment. The biologic mechanisms underlying these sub-phenotypes remains unknown. Our objective was to understand the underlying biology that differentiates AKI sub-phenotypes and associations with kidney outcomes.

Methods: We prospectively enrolled 173 ICU patients with sepsis from a suspected respiratory infection (87 without AKI and 86 with AKI on enrollment). Among the AKI patients, 66 were classified as AKI-SP1 and 20 as AKI-SP2 using a three-plasma biomarker classifier. Aptamer-based proteomics assessed 5,212 proteins in urine collected on ICU admission. We compared urinary protein abundances between AKI sub-phenotypes, conducted pathway analyses, tested associations with risk of RRT and blood bacteremia, and predicted AKI-SP2 class membership using LASSO.

Measurement And Main Results: In total, 117 urine proteins were higher in AKI-SP2, 195 were higher in AKI-SP1 (FDR < 0.05). Urinary proteins involved in inflammation and chemoattractant of neutrophils and monocytes (CXCL1 and REG3A) and oxidative stress (SOD2) were abundant in AKI-SP2, while proteins involved in collagen deposition (GP6), podocyte derived (SPOCK2), proliferation of mesenchymal cells (IL11RA), anti-inflammatory (IL10RB and TREM2) were abundant in AKI-SP1. Pathways related to immune response, complement activation and chemokine signaling were upregulated in AKI-SP2 and pathways of cell adhesion were upregulated in AKI-SP1. Overlap was present between urinary proteins that differentiated AKI sub-phenotypes and proteins that differentiated risk of RRT during hospitalization. Variable correlation was found between top aptamers and ELISA based protein assays. A LASSO derived urinary proteomic model to classify AKI-SP2 had a mean AUC of 0.86 (95% CI: 0.69-0.99).

Conclusion: Our findings suggest AKI-SP1 is characterized by a reparative, regenerative phenotype and AKI-SP2 is characterized as an immune and inflammatory phenotype associated with blood bacteremia. We identified shared biology between AKI sub-phenotypes and eventual risk of RRT highlighting potential therapeutic targets. Urine proteomics may be used to non-invasively classify SP2 participants.

Citing Articles

Urinary proteomics in sepsis-associated AKI.

Moser J, van der Aart T, Bouma H Crit Care. 2025; 29(1):77.

PMID: 39956897 PMC: 11831842. DOI: 10.1186/s13054-025-05306-w.

References
1.
Horby P, Lim W, Emberson J, Mafham M, Bell J, Linsell L . Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2020; 384(8):693-704. PMC: 7383595. DOI: 10.1056/NEJMoa2021436. View

2.
Joannidis M, Metnitz P . Epidemiology and natural history of acute renal failure in the ICU. Crit Care Clin. 2005; 21(2):239-49. DOI: 10.1016/j.ccc.2004.12.005. View

3.
Hoste E, Bagshaw S, Bellomo R, Cely C, Colman R, Cruz D . Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015; 41(8):1411-23. DOI: 10.1007/s00134-015-3934-7. View

4.
Clermont G, Acker C, Angus D, Sirio C, Pinsky M, Johnson J . Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes. Kidney Int. 2002; 62(3):986-96. DOI: 10.1046/j.1523-1755.2002.00509.x. View

5.
Uchino S, Kellum J, Bellomo R, Doig G, Morimatsu H, Morgera S . Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005; 294(7):813-8. DOI: 10.1001/jama.294.7.813. View