6.
Nazzaro F, Fratianni F, Coppola R, De Feo V
. Essential Oils and Antifungal Activity. Pharmaceuticals (Basel). 2017; 10(4).
PMC: 5748643.
DOI: 10.3390/ph10040086.
View
7.
Soylu E, Kurt S, Soylu S
. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol. 2010; 143(3):183-9.
DOI: 10.1016/j.ijfoodmicro.2010.08.015.
View
8.
Ali K, Maltese F, Figueiredo A, Rex M, Fortes A, Zyprian E
. Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points. Plant Sci. 2012; 191-192:100-7.
DOI: 10.1016/j.plantsci.2012.04.014.
View
9.
Broadhurst D, Goodacre R, Reinke S, Kuligowski J, Wilson I, Lewis M
. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018; 14(6):72.
PMC: 5960010.
DOI: 10.1007/s11306-018-1367-3.
View
10.
Guevara-Morato M, Garcia de Lacoba M, Garcia-Luque I, Serra M
. Characterization of a pathogenesis-related protein 4 (PR-4) induced in Capsicum chinense L3 plants with dual RNase and DNase activities. J Exp Bot. 2010; 61(12):3259-71.
PMC: 2905194.
DOI: 10.1093/jxb/erq148.
View
11.
Zhang Y, He J, Xiao Y, Zhang Y, Liu Y, Wan S
. CsGSTU8, a Glutathione S-Transferase From , Is Regulated by CsWRKY48 and Plays a Positive Role in Drought Tolerance. Front Plant Sci. 2021; 12:795919.
PMC: 8696008.
DOI: 10.3389/fpls.2021.795919.
View
12.
Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S
. Plant flavonoids--biosynthesis, transport and involvement in stress responses. Int J Mol Sci. 2013; 14(7):14950-73.
PMC: 3742282.
DOI: 10.3390/ijms140714950.
View
13.
Gui J, Shen J, Li L
. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. Plant Physiol. 2011; 157(2):574-86.
PMC: 3192572.
DOI: 10.1104/pp.111.178301.
View
14.
Maia M, Ferreira A, Nascimento R, Monteiro F, Traquete F, Marques A
. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Sci Rep. 2020; 10(1):15688.
PMC: 7515887.
DOI: 10.1038/s41598-020-72781-2.
View
15.
Luna E, Flandin A, Cassan C, Prigent S, Chevanne C, Kadiri C
. Metabolomics to Exploit the Primed Immune System of Tomato Fruit. Metabolites. 2020; 10(3).
PMC: 7143431.
DOI: 10.3390/metabo10030096.
View
16.
Toffolatti S, De Lorenzis G, Costa A, Maddalena G, Passera A, Bonza M
. Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Sci Rep. 2018; 8(1):12523.
PMC: 6104083.
DOI: 10.1038/s41598-018-30413-w.
View
17.
Qi J, Song C, Wang B, Zhou J, Kangasjarvi J, Zhu J
. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol. 2018; 60(9):805-826.
DOI: 10.1111/jipb.12654.
View
18.
Feder M, Walser J
. The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol. 2005; 18(4):901-10.
DOI: 10.1111/j.1420-9101.2005.00921.x.
View
19.
Gang D, Costa M, Fujita M, Dinkova-Kostova A, Wang H, Burlat V
. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol. 1999; 6(3):143-51.
DOI: 10.1016/S1074-5521(99)89006-1.
View
20.
Gilroy S, Bialasek M, Suzuki N, Gorecka M, Devireddy A, Karpinski S
. ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiol. 2016; 171(3):1606-15.
PMC: 4936577.
DOI: 10.1104/pp.16.00434.
View